summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/ScalarReplAggregates.cpp
blob: f934f1f12747cccb9c10621d56bbf18fd2f82bb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation.  This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible).  Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs.  As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;

namespace {
  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");

  struct SROA : public FunctionPass {
    bool runOnFunction(Function &F);

    bool performScalarRepl(Function &F);
    bool performPromotion(Function &F);

    // getAnalysisUsage - This pass does not require any passes, but we know it
    // will not alter the CFG, so say so.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
      AU.addRequired<TargetData>();
      AU.setPreservesCFG();
    }

  private:
    int isSafeElementUse(Value *Ptr);
    int isSafeUseOfAllocation(Instruction *User);
    int isSafeAllocaToScalarRepl(AllocationInst *AI);
    void CanonicalizeAllocaUsers(AllocationInst *AI);
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
  };

  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
}

// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }


bool SROA::runOnFunction(Function &F) {
  bool Changed = performPromotion(F);
  while (1) {
    bool LocalChange = performScalarRepl(F);
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
    Changed = true;
    LocalChange = performPromotion(F);
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
  }

  return Changed;
}


bool SROA::performPromotion(Function &F) {
  std::vector<AllocaInst*> Allocas;
  const TargetData &TD = getAnalysis<TargetData>();
  DominatorTree     &DT = getAnalysis<DominatorTree>();
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();

  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function

  bool Changed = false;
  
  while (1) {
    Allocas.clear();

    // Find allocas that are safe to promote, by looking at all instructions in
    // the entry node
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
        if (isAllocaPromotable(AI, TD))
          Allocas.push_back(AI);

    if (Allocas.empty()) break;

    PromoteMemToReg(Allocas, DT, DF, TD);
    NumPromoted += Allocas.size();
    Changed = true;
  }

  return Changed;
}


// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
  std::vector<AllocationInst*> WorkList;

  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
  BasicBlock &BB = F.getEntryBlock();
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
      WorkList.push_back(A);

  // Process the worklist
  bool Changed = false;
  while (!WorkList.empty()) {
    AllocationInst *AI = WorkList.back();
    WorkList.pop_back();

    // We cannot transform the allocation instruction if it is an array
    // allocation (allocations OF arrays are ok though), and an allocation of a
    // scalar value cannot be decomposed at all.
    //
    if (AI->isArrayAllocation() ||
        (!isa<StructType>(AI->getAllocatedType()) &&
         !isa<ArrayType>(AI->getAllocatedType()))) continue;

    // Check that all of the users of the allocation are capable of being
    // transformed.
    switch (isSafeAllocaToScalarRepl(AI)) {
    default: assert(0 && "Unexpected value!");
    case 0:  // Not safe to scalar replace.
      continue;
    case 1:  // Safe, but requires cleanup/canonicalizations first
      CanonicalizeAllocaUsers(AI);
    case 3:  // Safe to scalar replace.
      break;
    }

    DEBUG(std::cerr << "Found inst to xform: " << *AI);
    Changed = true;
    
    std::vector<AllocaInst*> ElementAllocas;
    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
      ElementAllocas.reserve(ST->getNumContainedTypes());
      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
                                        AI->getName() + "." + utostr(i), AI);
        ElementAllocas.push_back(NA);
        WorkList.push_back(NA);  // Add to worklist for recursive processing
      }
    } else {
      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
      ElementAllocas.reserve(AT->getNumElements());
      const Type *ElTy = AT->getElementType();
      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
        AllocaInst *NA = new AllocaInst(ElTy, 0,
                                        AI->getName() + "." + utostr(i), AI);
        ElementAllocas.push_back(NA);
        WorkList.push_back(NA);  // Add to worklist for recursive processing
      }
    }
    
    // Now that we have created the alloca instructions that we want to use,
    // expand the getelementptr instructions to use them.
    //
    while (!AI->use_empty()) {
      Instruction *User = cast<Instruction>(AI->use_back());
      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
      unsigned Idx = 
         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
      
      assert(Idx < ElementAllocas.size() && "Index out of range?");
      AllocaInst *AllocaToUse = ElementAllocas[Idx];
      
      Value *RepValue;
      if (GEPI->getNumOperands() == 3) {
        // Do not insert a new getelementptr instruction with zero indices, only
        // to have it optimized out later.
        RepValue = AllocaToUse;
      } else {
        // We are indexing deeply into the structure, so we still need a
        // getelement ptr instruction to finish the indexing.  This may be
        // expanded itself once the worklist is rerun.
        //
        std::string OldName = GEPI->getName();  // Steal the old name.
        std::vector<Value*> NewArgs;
        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
        GEPI->setName("");
        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
      }
      
      // Move all of the users over to the new GEP.
      GEPI->replaceAllUsesWith(RepValue);
      // Delete the old GEP
      GEPI->eraseFromParent();
    }

    // Finally, delete the Alloca instruction
    AI->getParent()->getInstList().erase(AI);
    NumReplaced++;
  }

  return Changed;
}


/// isSafeElementUse - Check to see if this use is an allowed use for a
/// getelementptr instruction of an array aggregate allocation.
///
int SROA::isSafeElementUse(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I) {
    Instruction *User = cast<Instruction>(*I);
    switch (User->getOpcode()) {
    case Instruction::Load:  break;
    case Instruction::Store:
      // Store is ok if storing INTO the pointer, not storing the pointer
      if (User->getOperand(0) == Ptr) return 0;
      break;
    case Instruction::GetElementPtr: {
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
      if (GEP->getNumOperands() > 1) {
        if (!isa<Constant>(GEP->getOperand(1)) ||
            !cast<Constant>(GEP->getOperand(1))->isNullValue())
          return 0;  // Using pointer arithmetic to navigate the array...
      }
      if (!isSafeElementUse(GEP)) return 0;
      break;
    }
    default:
      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
      return 0;
    }
  }
  return 3;  // All users look ok :)
}

/// AllUsersAreLoads - Return true if all users of this value are loads.
static bool AllUsersAreLoads(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I)
    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
      return false;
  return true; 
}

/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
/// aggregate allocation.
///
int SROA::isSafeUseOfAllocation(Instruction *User) {
  if (!isa<GetElementPtrInst>(User)) return 0;

  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);

  // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
  if (I == E ||
      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
    return 0;

  ++I;
  if (I == E) return 0;  // ran out of GEP indices??

  // If this is a use of an array allocation, do a bit more checking for sanity.
  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
    uint64_t NumElements = AT->getNumElements();

    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
      // Check to make sure that index falls within the array.  If not,
      // something funny is going on, so we won't do the optimization.
      //
      if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
        return 0;
      
    } else {
      // If this is an array index and the index is not constant, we cannot
      // promote... that is unless the array has exactly one or two elements in
      // it, in which case we CAN promote it, but we have to canonicalize this
      // out if this is the only problem.
      if (NumElements == 1 || NumElements == 2)
        return AllUsersAreLoads(GEPI) ? 1 : 0;  // Canonicalization required!
      return 0;
    }
  }

  // If there are any non-simple uses of this getelementptr, make sure to reject
  // them.
  return isSafeElementUse(GEPI);
}

/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
///
int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
  // Loop over the use list of the alloca.  We can only transform it if all of
  // the users are safe to transform.
  //
  int isSafe = 3;
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
       I != E; ++I) {
    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
    if (isSafe == 0) {
      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
            << **I);
      return 0;
    }
  }
  // If we require cleanup, isSafe is now 1, otherwise it is 3.
  return isSafe;
}

/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
  // At this point, we know that the end result will be SROA'd and promoted, so
  // we can insert ugly code if required so long as sroa+mem2reg will clean it
  // up.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
       UI != E; ) {
    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
    gep_type_iterator I = gep_type_begin(GEPI);
    ++I;

    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
      uint64_t NumElements = AT->getNumElements();
      
      if (!isa<ConstantInt>(I.getOperand())) {
        if (NumElements == 1) {
          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
        } else {
          assert(NumElements == 2 && "Unhandled case!");
          // All users of the GEP must be loads.  At each use of the GEP, insert
          // two loads of the appropriate indexed GEP and select between them.
          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
                              Constant::getNullValue(I.getOperand()->getType()),
                                                     "isone", GEPI);
          // Insert the new GEP instructions, which are properly indexed.
          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
          Indices[1] = Constant::getNullValue(Type::IntTy);
          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
                                                 GEPI->getName()+".0", GEPI);
          Indices[1] = ConstantInt::get(Type::IntTy, 1);
          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
                                                GEPI->getName()+".1", GEPI);
          // Replace all loads of the variable index GEP with loads from both
          // indexes and a select.
          while (!GEPI->use_empty()) {
            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
            LI->replaceAllUsesWith(R);
            LI->eraseFromParent();
          }
          GEPI->eraseFromParent();
        }
      }
    }
  }
}