summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/BasicBlock.cpp
blob: ad54f158ef30742ab7a9814f2998b8868b739c30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/Compiler.h"
#include "SymbolTableListTraitsImpl.h"
#include <algorithm>
using namespace llvm;

ValueSymbolTable *BasicBlock::getValueSymbolTable() {
  if (Function *F = getParent())
    return &F->getValueSymbolTable();
  return 0;
}

LLVMContext *BasicBlock::getContext() const {
  return Parent ? Parent->getContext() : 0;
}

// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class SymbolTableListTraits<Instruction, BasicBlock>;


BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
                       BasicBlock *InsertBefore)
  : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {

  // Make sure that we get added to a function
  LeakDetector::addGarbageObject(this);

  if (InsertBefore) {
    assert(NewParent &&
           "Cannot insert block before another block with no function!");
    NewParent->getBasicBlockList().insert(InsertBefore, this);
  } else if (NewParent) {
    NewParent->getBasicBlockList().push_back(this);
  }
  
  setName(Name);
}


BasicBlock::~BasicBlock() {
  assert(getParent() == 0 && "BasicBlock still linked into the program!");
  dropAllReferences();
  InstList.clear();
}

void BasicBlock::setParent(Function *parent) {
  if (getParent())
    LeakDetector::addGarbageObject(this);

  // Set Parent=parent, updating instruction symtab entries as appropriate.
  InstList.setSymTabObject(&Parent, parent);

  if (getParent())
    LeakDetector::removeGarbageObject(this);
}

void BasicBlock::removeFromParent() {
  getParent()->getBasicBlockList().remove(this);
}

void BasicBlock::eraseFromParent() {
  getParent()->getBasicBlockList().erase(this);
}

/// moveBefore - Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right before MovePos.
void BasicBlock::moveBefore(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(MovePos,
                       getParent()->getBasicBlockList(), this);
}

/// moveAfter - Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right after MovePos.
void BasicBlock::moveAfter(BasicBlock *MovePos) {
  Function::iterator I = MovePos;
  MovePos->getParent()->getBasicBlockList().splice(++I,
                                       getParent()->getBasicBlockList(), this);
}


TerminatorInst *BasicBlock::getTerminator() {
  if (InstList.empty()) return 0;
  return dyn_cast<TerminatorInst>(&InstList.back());
}

const TerminatorInst *BasicBlock::getTerminator() const {
  if (InstList.empty()) return 0;
  return dyn_cast<TerminatorInst>(&InstList.back());
}

Instruction* BasicBlock::getFirstNonPHI() {
  BasicBlock::iterator i = begin();
  // All valid basic blocks should have a terminator,
  // which is not a PHINode. If we have an invalid basic
  // block we'll get an assertion failure when dereferencing
  // a past-the-end iterator.
  while (isa<PHINode>(i)) ++i;
  return &*i;
}

void BasicBlock::dropAllReferences() {
  for(iterator I = begin(), E = end(); I != E; ++I)
    I->dropAllReferences();
}

/// getSinglePredecessor - If this basic block has a single predecessor block,
/// return the block, otherwise return a null pointer.
BasicBlock *BasicBlock::getSinglePredecessor() {
  pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return 0;         // No preds.
  BasicBlock *ThePred = *PI;
  ++PI;
  return (PI == E) ? ThePred : 0 /*multiple preds*/;
}

/// getUniquePredecessor - If this basic block has a unique predecessor block,
/// return the block, otherwise return a null pointer.
/// Note that unique predecessor doesn't mean single edge, there can be 
/// multiple edges from the unique predecessor to this block (for example 
/// a switch statement with multiple cases having the same destination).
BasicBlock *BasicBlock::getUniquePredecessor() {
  pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return 0; // No preds.
  BasicBlock *PredBB = *PI;
  ++PI;
  for (;PI != E; ++PI) {
    if (*PI != PredBB)
      return 0;
    // The same predecessor appears multiple times in the predecessor list.
    // This is OK.
  }
  return PredBB;
}

/// removePredecessor - This method is used to notify a BasicBlock that the
/// specified Predecessor of the block is no longer able to reach it.  This is
/// actually not used to update the Predecessor list, but is actually used to
/// update the PHI nodes that reside in the block.  Note that this should be
/// called while the predecessor still refers to this block.
///
void BasicBlock::removePredecessor(BasicBlock *Pred,
                                   bool DontDeleteUselessPHIs) {
  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
         "removePredecessor: BB is not a predecessor!");

  if (InstList.empty()) return;
  PHINode *APN = dyn_cast<PHINode>(&front());
  if (!APN) return;   // Quick exit.

  // If there are exactly two predecessors, then we want to nuke the PHI nodes
  // altogether.  However, we cannot do this, if this in this case:
  //
  //  Loop:
  //    %x = phi [X, Loop]
  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
  //    br Loop                 ;; %x2 does not dominate all uses
  //
  // This is because the PHI node input is actually taken from the predecessor
  // basic block.  The only case this can happen is with a self loop, so we
  // check for this case explicitly now.
  //
  unsigned max_idx = APN->getNumIncomingValues();
  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
  if (max_idx == 2) {
    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);

    // Disable PHI elimination!
    if (this == Other) max_idx = 3;
  }

  // <= Two predecessors BEFORE I remove one?
  if (max_idx <= 2 && !DontDeleteUselessPHIs) {
    // Yup, loop through and nuke the PHI nodes
    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
      // Remove the predecessor first.
      PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);

      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
      if (max_idx == 2) {
        if (PN->getOperand(0) != PN)
          PN->replaceAllUsesWith(PN->getOperand(0));
        else
          // We are left with an infinite loop with no entries: kill the PHI.
          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
        getInstList().pop_front();    // Remove the PHI node
      }

      // If the PHI node already only had one entry, it got deleted by
      // removeIncomingValue.
    }
  } else {
    // Okay, now we know that we need to remove predecessor #pred_idx from all
    // PHI nodes.  Iterate over each PHI node fixing them up
    PHINode *PN;
    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
      ++II;
      PN->removeIncomingValue(Pred, false);
      // If all incoming values to the Phi are the same, we can replace the Phi
      // with that value.
      Value* PNV = 0;
      if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
        PN->replaceAllUsesWith(PNV);
        PN->eraseFromParent();
      }
    }
  }
}


/// splitBasicBlock - This splits a basic block into two at the specified
/// instruction.  Note that all instructions BEFORE the specified iterator stay
/// as part of the original basic block, an unconditional branch is added to
/// the new BB, and the rest of the instructions in the BB are moved to the new
/// BB, including the old terminator.  This invalidates the iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
  assert(I != InstList.end() &&
         "Trying to get me to create degenerate basic block!");

  BasicBlock *InsertBefore = next(Function::iterator(this))
                               .getNodePtrUnchecked();
  BasicBlock *New = BasicBlock::Create(BBName, getParent(), InsertBefore);

  // Move all of the specified instructions from the original basic block into
  // the new basic block.
  New->getInstList().splice(New->end(), this->getInstList(), I, end());

  // Add a branch instruction to the newly formed basic block.
  BranchInst::Create(New, this);

  // Now we must loop through all of the successors of the New block (which
  // _were_ the successors of the 'this' block), and update any PHI nodes in
  // successors.  If there were PHI nodes in the successors, then they need to
  // know that incoming branches will be from New, not from Old.
  //
  for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
    // Loop over any phi nodes in the basic block, updating the BB field of
    // incoming values...
    BasicBlock *Successor = *I;
    PHINode *PN;
    for (BasicBlock::iterator II = Successor->begin();
         (PN = dyn_cast<PHINode>(II)); ++II) {
      int IDX = PN->getBasicBlockIndex(this);
      while (IDX != -1) {
        PN->setIncomingBlock((unsigned)IDX, New);
        IDX = PN->getBasicBlockIndex(this);
      }
    }
  }
  return New;
}