1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// This file implements the BasicBlock class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Constant.h"
#include "llvm/iPHINode.h"
#include "llvm/SymbolTable.h"
#include "Support/LeakDetector.h"
#include "SymbolTableListTraitsImpl.h"
#include <algorithm>
// DummyInst - An instance of this class is used to mark the end of the
// instruction list. This is not a real instruction.
//
struct DummyInst : public Instruction {
DummyInst() : Instruction(Type::VoidTy, NumOtherOps) {
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(this);
}
virtual Instruction *clone() const {
assert(0 && "Cannot clone EOL");abort();
return 0;
}
virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
// Methods for support type inquiry through isa, cast, and dyn_cast...
static inline bool classof(const DummyInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == NumOtherOps;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
Instruction *ilist_traits<Instruction>::createNode() {
return new DummyInst();
}
iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
return BB->getInstList();
}
// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template SymbolTableListTraits<Instruction, BasicBlock, Function>;
// BasicBlock ctor - If the function parameter is specified, the basic block is
// automatically inserted at the end of the function.
//
BasicBlock::BasicBlock(const std::string &name, Function *Parent)
: Value(Type::LabelTy, Value::BasicBlockVal, name) {
// Initialize the instlist...
InstList.setItemParent(this);
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
if (Parent)
Parent->getBasicBlockList().push_back(this);
}
/// BasicBlock ctor - If the InsertBefore parameter is specified, the basic
/// block is automatically inserted right before the specified block.
///
BasicBlock::BasicBlock(const std::string &Name, BasicBlock *InsertBefore)
: Value(Type::LabelTy, Value::BasicBlockVal, Name) {
// Initialize the instlist...
InstList.setItemParent(this);
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
if (InsertBefore) {
assert(InsertBefore->getParent() &&
"Cannot insert block before another block that is not embedded into"
" a function yet!");
InsertBefore->getParent()->getBasicBlockList().insert(InsertBefore, this);
}
}
BasicBlock::~BasicBlock() {
dropAllReferences();
InstList.clear();
}
void BasicBlock::setParent(Function *parent) {
if (getParent())
LeakDetector::addGarbageObject(this);
InstList.setParent(parent);
if (getParent())
LeakDetector::removeGarbageObject(this);
}
// Specialize setName to take care of symbol table majik
void BasicBlock::setName(const std::string &name, SymbolTable *ST) {
Function *P;
assert((ST == 0 || (!getParent() || ST == getParent()->getSymbolTable())) &&
"Invalid symtab argument!");
if ((P = getParent()) && hasName()) P->getSymbolTable()->remove(this);
Value::setName(name);
if (P && hasName()) P->getSymbolTable()->insert(this);
}
TerminatorInst *BasicBlock::getTerminator() {
if (InstList.empty()) return 0;
return dyn_cast<TerminatorInst>(&InstList.back());
}
const TerminatorInst *const BasicBlock::getTerminator() const {
if (InstList.empty()) return 0;
return dyn_cast<TerminatorInst>(&InstList.back());
}
void BasicBlock::dropAllReferences() {
for(iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
}
// hasConstantReferences() - This predicate is true if there is a
// reference to this basic block in the constant pool for this method. For
// example, if a block is reached through a switch table, that table resides
// in the constant pool, and the basic block is reference from it.
//
bool BasicBlock::hasConstantReferences() const {
for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I)
if (::isa<Constant>((Value*)*I))
return true;
return false;
}
// removePredecessor - This method is used to notify a BasicBlock that the
// specified Predecessor of the block is no longer able to reach it. This is
// actually not used to update the Predecessor list, but is actually used to
// update the PHI nodes that reside in the block. Note that this should be
// called while the predecessor still refers to this block.
//
void BasicBlock::removePredecessor(BasicBlock *Pred) {
assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) &&
"removePredecessor: BB is not a predecessor!");
if (!isa<PHINode>(front())) return; // Quick exit.
pred_iterator PI(pred_begin(this)), EI(pred_end(this));
unsigned max_idx;
// Loop over the rest of the predecessors until we run out, or until we find
// out that there are more than 2 predecessors.
for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/;
// If there are exactly two predecessors, then we want to nuke the PHI nodes
// altogether. We cannot do this, however if this in this case however:
//
// Loop:
// %x = phi [X, Loop]
// %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
// br Loop ;; %x2 does not dominate all uses
//
// This is because the PHI node input is actually taken from the predecessor
// basic block. The only case this can happen is with a self loop, so we
// check for this case explicitly now.
//
assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
if (max_idx == 2) {
PI = pred_begin(this);
BasicBlock *Other = *PI == Pred ? *++PI : *PI;
// Disable PHI elimination!
if (this == Other) max_idx = 3;
}
if (max_idx <= 2) { // <= Two predecessors BEFORE I remove one?
// Yup, loop through and nuke the PHI nodes
while (PHINode *PN = dyn_cast<PHINode>(&front())) {
PN->removeIncomingValue(Pred); // Remove the predecessor first...
// If the PHI _HAD_ two uses, replace PHI node with its now *single* value
if (max_idx == 2) {
PN->replaceAllUsesWith(PN->getOperand(0));
getInstList().pop_front(); // Remove the PHI node
}
// If the PHI node already only had one entry, it got deleted by
// removeIncomingValue.
}
} else {
// Okay, now we know that we need to remove predecessor #pred_idx from all
// PHI nodes. Iterate over each PHI node fixing them up
for (iterator II = begin(); PHINode *PN = dyn_cast<PHINode>(&*II); ++II)
PN->removeIncomingValue(Pred);
}
}
// splitBasicBlock - This splits a basic block into two at the specified
// instruction. Note that all instructions BEFORE the specified iterator stay
// as part of the original basic block, an unconditional branch is added to
// the new BB, and the rest of the instructions in the BB are moved to the new
// BB, including the old terminator. This invalidates the iterator.
//
// Note that this only works on well formed basic blocks (must have a
// terminator), and 'I' must not be the end of instruction list (which would
// cause a degenerate basic block to be formed, having a terminator inside of
// the basic block).
//
BasicBlock *BasicBlock::splitBasicBlock(iterator I) {
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
assert(I != InstList.end() &&
"Trying to get me to create degenerate basic block!");
BasicBlock *New = new BasicBlock("", getParent());
// Go from the end of the basic block through to the iterator pointer, moving
// to the new basic block...
Instruction *Inst = 0;
do {
iterator EndIt = end();
Inst = InstList.remove(--EndIt); // Remove from end
New->InstList.push_front(Inst); // Add to front
} while (Inst != &*I); // Loop until we move the specified instruction.
// Add a branch instruction to the newly formed basic block.
InstList.push_back(new BranchInst(New));
// Now we must loop through all of the successors of the New block (which
// _were_ the successors of the 'this' block), and update any PHI nodes in
// successors. If there were PHI nodes in the successors, then they need to
// know that incoming branches will be from New, not from Old.
//
for (BasicBlock::succ_iterator I = succ_begin(New), E = succ_end(New);
I != E; ++I) {
// Loop over any phi nodes in the basic block, updating the BB field of
// incoming values...
BasicBlock *Successor = *I;
for (BasicBlock::iterator II = Successor->begin();
PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
int IDX = PN->getBasicBlockIndex(this);
while (IDX != -1) {
PN->setIncomingBlock((unsigned)IDX, New);
IDX = PN->getBasicBlockIndex(this);
}
}
}
return New;
}
|