1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
//===-- ConstantHandling.h - Stuff for manipulating constants ----*- C++ -*--=//
//
// This file contains the declarations of some cool operators that allow you
// to do natural things with constant pool values.
//
// Unfortunately we can't overload operators on pointer types (like this:)
//
// inline bool operator==(const ConstPoolVal *V1, const ConstPoolVal *V2)
//
// so we must make due with references, even though it leads to some butt ugly
// looking code downstream. *sigh* (ex: ConstPoolVal *Result = *V1 + *v2; )
//
//===----------------------------------------------------------------------===//
//
// WARNING: These operators return pointers to newly 'new'd objects. You MUST
// make sure to free them if you don't want them hanging around. Also,
// note that these may return a null object if I don't know how to
// perform those operations on the specified constant types.
//
//===----------------------------------------------------------------------===//
//
// Implementation notes:
// This library is implemented this way for a reason: In most cases, we do
// not want to have to link the constant mucking code into an executable.
// We do, however want to tie some of this into the main type system, as an
// optional component. By using a mutable cache member in the Type class, we
// get exactly the kind of behavior we want.
//
// In the end, we get performance almost exactly the same as having a virtual
// function dispatch, but we don't have to put our virtual functions into the
// "Type" class, and we can implement functionality with templates. Good deal.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPT_CONSTANTHANDLING_H
#define LLVM_OPT_CONSTANTHANDLING_H
#include "llvm/ConstPoolVals.h"
#include "llvm/Instruction.h"
#include "llvm/Type.h"
namespace opt {
//===----------------------------------------------------------------------===//
// Implement == directly...
//===----------------------------------------------------------------------===//
inline ConstPoolBool *operator==(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return new ConstPoolBool(V1.equals(&V2));
}
//===----------------------------------------------------------------------===//
// Implement all other operators indirectly through TypeRules system
//===----------------------------------------------------------------------===//
class ConstRules {
protected:
inline ConstRules() {} // Can only be subclassed...
public:
// Unary Operators...
virtual ConstPoolVal *not(const ConstPoolVal *V) const = 0;
// Binary Operators...
virtual ConstPoolVal *add(const ConstPoolVal *V1,
const ConstPoolVal *V2) const = 0;
virtual ConstPoolVal *sub(const ConstPoolVal *V1,
const ConstPoolVal *V2) const = 0;
virtual ConstPoolVal *mul(const ConstPoolVal *V1,
const ConstPoolVal *V2) const = 0;
virtual ConstPoolBool *lessthan(const ConstPoolVal *V1,
const ConstPoolVal *V2) const = 0;
// Casting operators. ick
virtual ConstPoolBool *castToBool (const ConstPoolVal *V) const = 0;
virtual ConstPoolSInt *castToSByte (const ConstPoolVal *V) const = 0;
virtual ConstPoolUInt *castToUByte (const ConstPoolVal *V) const = 0;
virtual ConstPoolSInt *castToShort (const ConstPoolVal *V) const = 0;
virtual ConstPoolUInt *castToUShort(const ConstPoolVal *V) const = 0;
virtual ConstPoolSInt *castToInt (const ConstPoolVal *V) const = 0;
virtual ConstPoolUInt *castToUInt (const ConstPoolVal *V) const = 0;
virtual ConstPoolSInt *castToLong (const ConstPoolVal *V) const = 0;
virtual ConstPoolUInt *castToULong (const ConstPoolVal *V) const = 0;
virtual ConstPoolFP *castToFloat (const ConstPoolVal *V) const = 0;
virtual ConstPoolFP *castToDouble(const ConstPoolVal *V) const = 0;
inline ConstPoolVal *castTo(const ConstPoolVal *V, const Type *Ty) const {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: return castToBool(V);
case Type::UByteTyID: return castToUByte(V);
case Type::SByteTyID: return castToSByte(V);
case Type::UShortTyID: return castToUShort(V);
case Type::ShortTyID: return castToShort(V);
case Type::UIntTyID: return castToUInt(V);
case Type::IntTyID: return castToInt(V);
case Type::ULongTyID: return castToULong(V);
case Type::LongTyID: return castToLong(V);
case Type::FloatTyID: return castToFloat(V);
case Type::DoubleTyID: return castToDouble(V);
default: return 0;
}
}
// ConstRules::get - A type will cache its own type rules if one is needed...
// we just want to make sure to hit the cache instead of doing it indirectly,
// if possible...
//
static inline const ConstRules *get(const ConstPoolVal &V) {
const ConstRules *Result = V.getType()->getConstRules();
return Result ? Result : find(V.getType());
}
private :
static const ConstRules *find(const Type *Ty);
ConstRules(const ConstRules &); // Do not implement
ConstRules &operator=(const ConstRules &); // Do not implement
};
inline ConstPoolVal *operator!(const ConstPoolVal &V) {
return ConstRules::get(V)->not(&V);
}
inline ConstPoolVal *operator+(const ConstPoolVal &V1, const ConstPoolVal &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->add(&V1, &V2);
}
inline ConstPoolVal *operator-(const ConstPoolVal &V1, const ConstPoolVal &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->sub(&V1, &V2);
}
inline ConstPoolVal *operator*(const ConstPoolVal &V1, const ConstPoolVal &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->mul(&V1, &V2);
}
inline ConstPoolBool *operator<(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->lessthan(&V1, &V2);
}
//===----------------------------------------------------------------------===//
// Implement 'derived' operators based on what we already have...
//===----------------------------------------------------------------------===//
inline ConstPoolBool *operator>(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
return V2 < V1;
}
inline ConstPoolBool *operator!=(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
ConstPoolBool *Result = V1 == V2;
Result->setValue(!Result->getValue()); // Invert value
return Result; // !(V1 == V2)
}
inline ConstPoolBool *operator>=(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
ConstPoolBool *Result = V1 < V2;
Result->setValue(!Result->getValue()); // Invert value
return Result; // !(V1 < V2)
}
inline ConstPoolBool *operator<=(const ConstPoolVal &V1,
const ConstPoolVal &V2) {
ConstPoolBool *Result = V1 > V2;
Result->setValue(!Result->getValue()); // Invert value
return Result; // !(V1 > V2)
}
//===----------------------------------------------------------------------===//
// Implement higher level instruction folding type instructions
//===----------------------------------------------------------------------===//
inline ConstPoolVal *ConstantFoldUnaryInstruction(unsigned Opcode,
ConstPoolVal *V) {
switch (Opcode) {
case Instruction::Not: return !*V;
}
return 0;
}
inline ConstPoolVal *ConstantFoldBinaryInstruction(unsigned Opcode,
ConstPoolVal *V1,
ConstPoolVal *V2) {
switch (Opcode) {
case Instruction::Add: return *V1 + *V2;
case Instruction::Sub: return *V1 - *V2;
case Instruction::SetEQ: return *V1 == *V2;
case Instruction::SetNE: return *V1 != *V2;
case Instruction::SetLE: return *V1 <= *V2;
case Instruction::SetGE: return *V1 >= *V2;
case Instruction::SetLT: return *V1 < *V2;
case Instruction::SetGT: return *V1 > *V2;
}
return 0;
}
} // end namespace opt
#endif
|