summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Constants.cpp
blob: faef1473da087cfb8bf41ff62cf25d0e27adf291 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===-- Constants.cpp - Implement Constant nodes -----------------*- C++ -*--=//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//

#define __STDC_LIMIT_MACROS           // Get defs for INT64_MAX and friends...
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/SlotCalculator.h"
#include "Support/StringExtras.h"
#include <algorithm>

using std::map;
using std::pair;
using std::make_pair;
using std::vector;

ConstantBool *ConstantBool::True  = new ConstantBool(true);
ConstantBool *ConstantBool::False = new ConstantBool(false);


//===----------------------------------------------------------------------===//
//                              Constant Class
//===----------------------------------------------------------------------===//

// Specialize setName to take care of symbol table majik
void Constant::setName(const std::string &Name, SymbolTable *ST) {
  assert(ST && "Type::setName - Must provide symbol table argument!");

  if (Name.size()) ST->insert(Name, this);
}

// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
  switch (Ty->getPrimitiveID()) {
  case Type::BoolTyID:   return ConstantBool::get(false);
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID:   return ConstantSInt::get(Ty, 0);

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);

  case Type::FloatTyID:
  case Type::DoubleTyID: return ConstantFP::get(Ty, 0);

  case Type::PointerTyID: 
    return ConstantPointerNull::get(cast<PointerType>(Ty));
  default:
    return 0;
  }
}

void Constant::destroyConstantImpl() {
  // When a Constant is destroyed, there may be lingering
  // references to the constant by other constants in the constant pool.  These
  // constants are implicitly dependant on the module that is being deleted,
  // but they don't know that.  Because we only find out when the CPV is
  // deleted, we must now notify all of our users (that should only be
  // Constants) that they are, in fact, invalid now and should be deleted.
  //
  while (!use_empty()) {
    Value *V = use_back();
#ifndef NDEBUG      // Only in -g mode...
    if (!isa<Constant>(V))
      std::cerr << "While deleting: " << *this
                << "\n\nUse still stuck around after Def is destroyed: "
                << *V << "\n\n";
#endif
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    Constant *CPV = cast<Constant>(V);
    CPV->destroyConstant();

    // The constant should remove itself from our use list...
    assert((use_empty() || use_back() != V) && "Constant not removed!");
  }

  // Value has no outstanding references it is safe to delete it now...
  delete this;
}

//===----------------------------------------------------------------------===//
//                            ConstantXXX Classes
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//                             Normal Constructors

ConstantBool::ConstantBool(bool V) : Constant(Type::BoolTy) {
  Val = V;
}

ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : Constant(Ty) {
  Val.Unsigned = V;
}

ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) {
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) {
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) {
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
  Val = V;
}

ConstantArray::ConstantArray(const ArrayType *T,
                             const std::vector<Constant*> &V) : Constant(T) {
  for (unsigned i = 0; i < V.size(); i++) {
    assert(V[i]->getType() == T->getElementType());
    Operands.push_back(Use(V[i], this));
  }
}

ConstantStruct::ConstantStruct(const StructType *T,
                               const std::vector<Constant*> &V) : Constant(T) {
  const StructType::ElementTypes &ETypes = T->getElementTypes();
  assert(V.size() == ETypes.size() &&
         "Invalid initializer vector for constant structure");
  for (unsigned i = 0; i < V.size(); i++) {
    assert(V[i]->getType() == ETypes[i]);
    Operands.push_back(Use(V[i], this));
  }
}

ConstantPointerRef::ConstantPointerRef(GlobalValue *GV)
  : ConstantPointer(GV->getType()) {
  Operands.push_back(Use(GV, this));
}

ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
  : Constant(Ty), iType(Opcode) {
  Operands.push_back(Use(C, this));
}

ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
  : Constant(C1->getType()), iType(Opcode) {
  Operands.push_back(Use(C1, this));
  Operands.push_back(Use(C2, this));
}

ConstantExpr::ConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
                           const Type *DestTy)
  : Constant(DestTy), iType(Instruction::GetElementPtr) {
  Operands.reserve(1+IdxList.size());
  Operands.push_back(Use(C, this));
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
    Operands.push_back(Use(IdxList[i], this));
}



//===----------------------------------------------------------------------===//
//                           classof implementations

bool ConstantInt::classof(const Constant *CPV) {
  return CPV->getType()->isIntegral() && !isa<ConstantExpr>(CPV);
}
bool ConstantSInt::classof(const Constant *CPV) {
  return CPV->getType()->isSigned() && !isa<ConstantExpr>(CPV);
}
bool ConstantUInt::classof(const Constant *CPV) {
  return CPV->getType()->isUnsigned() && !isa<ConstantExpr>(CPV);
}
bool ConstantFP::classof(const Constant *CPV) {
  const Type *Ty = CPV->getType();
  return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) &&
          !isa<ConstantExpr>(CPV));
}
bool ConstantArray::classof(const Constant *CPV) {
  return isa<ArrayType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
}
bool ConstantStruct::classof(const Constant *CPV) {
  return isa<StructType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
}
bool ConstantPointer::classof(const Constant *CPV) {
  return (isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV));
}



//===----------------------------------------------------------------------===//
//                      isValueValidForType implementations

bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
  switch (Ty->getPrimitiveID()) {
  default:
    return false;         // These can't be represented as integers!!!

    // Signed types...
  case Type::SByteTyID:
    return (Val <= INT8_MAX && Val >= INT8_MIN);
  case Type::ShortTyID:
    return (Val <= INT16_MAX && Val >= INT16_MIN);
  case Type::IntTyID:
    return (Val <= INT32_MAX && Val >= INT32_MIN);
  case Type::LongTyID:
    return true;          // This is the largest type...
  }
  assert(0 && "WTF?");
  return false;
}

bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
  switch (Ty->getPrimitiveID()) {
  default:
    return false;         // These can't be represented as integers!!!

    // Unsigned types...
  case Type::UByteTyID:
    return (Val <= UINT8_MAX);
  case Type::UShortTyID:
    return (Val <= UINT16_MAX);
  case Type::UIntTyID:
    return (Val <= UINT32_MAX);
  case Type::ULongTyID:
    return true;          // This is the largest type...
  }
  assert(0 && "WTF?");
  return false;
}

bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
  switch (Ty->getPrimitiveID()) {
  default:
    return false;         // These can't be represented as floating point!

    // TODO: Figure out how to test if a double can be cast to a float!
  case Type::FloatTyID:
    /*
    return (Val <= UINT8_MAX);
    */
  case Type::DoubleTyID:
    return true;          // This is the largest type...
  }
};

//===----------------------------------------------------------------------===//
//                      Factory Function Implementation

template<class ValType, class ConstantClass>
struct ValueMap {
  typedef pair<const Type*, ValType> ConstHashKey;
  map<ConstHashKey, ConstantClass *> Map;

  inline ConstantClass *get(const Type *Ty, ValType V) {
    typename map<ConstHashKey,ConstantClass *>::iterator I =
      Map.find(ConstHashKey(Ty, V));
    return (I != Map.end()) ? I->second : 0;
  }

  inline void add(const Type *Ty, ValType V, ConstantClass *CP) {
    Map.insert(make_pair(ConstHashKey(Ty, V), CP));
  }

  inline void remove(ConstantClass *CP) {
    for (typename map<ConstHashKey,ConstantClass *>::iterator I = Map.begin(),
                                                      E = Map.end(); I != E;++I)
      if (I->second == CP) {
	Map.erase(I);
	return;
      }
  }
};

//---- ConstantUInt::get() and ConstantSInt::get() implementations...
//
static ValueMap<uint64_t, ConstantInt> IntConstants;

ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
  ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V);
  if (!Result)   // If no preexisting value, create one now...
    IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V));
  return Result;
}

ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
  ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V);
  if (!Result)   // If no preexisting value, create one now...
    IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V));
  return Result;
}

ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
  assert(V <= 127 && "Can only be used with very small positive constants!");
  if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
  return ConstantUInt::get(Ty, V);
}

//---- ConstantFP::get() implementation...
//
static ValueMap<double, ConstantFP> FPConstants;

ConstantFP *ConstantFP::get(const Type *Ty, double V) {
  ConstantFP *Result = FPConstants.get(Ty, V);
  if (!Result)   // If no preexisting value, create one now...
    FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V));
  return Result;
}

//---- ConstantArray::get() implementation...
//
static ValueMap<std::vector<Constant*>, ConstantArray> ArrayConstants;

ConstantArray *ConstantArray::get(const ArrayType *Ty,
                                  const std::vector<Constant*> &V) {
  ConstantArray *Result = ArrayConstants.get(Ty, V);
  if (!Result)   // If no preexisting value, create one now...
    ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V));
  return Result;
}

// ConstantArray::get(const string&) - Return an array that is initialized to
// contain the specified string.  A null terminator is added to the specified
// string so that it may be used in a natural way...
//
ConstantArray *ConstantArray::get(const std::string &Str) {
  std::vector<Constant*> ElementVals;

  for (unsigned i = 0; i < Str.length(); ++i)
    ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));

  // Add a null terminator to the string...
  ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));

  ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
  return ConstantArray::get(ATy, ElementVals);
}


// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
  ArrayConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantStruct::get() implementation...
//
static ValueMap<std::vector<Constant*>, ConstantStruct> StructConstants;

ConstantStruct *ConstantStruct::get(const StructType *Ty,
                                    const std::vector<Constant*> &V) {
  ConstantStruct *Result = StructConstants.get(Ty, V);
  if (!Result)   // If no preexisting value, create one now...
    StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V));
  return Result;
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
  StructConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantPointerNull::get() implementation...
//
static ValueMap<char, ConstantPointerNull> NullPtrConstants;

ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
  ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0);
  if (!Result)   // If no preexisting value, create one now...
    NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty));
  return Result;
}

//---- ConstantPointerRef::get() implementation...
//
ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) {
  assert(GV->getParent() && "Global Value must be attached to a module!");
  
  // The Module handles the pointer reference sharing...
  return GV->getParent()->getConstantPointerRef(GV);
}

//---- ConstantExpr::get() implementations...
//
typedef pair<unsigned, vector<Constant*> > ExprMapKeyType;
static ValueMap<const ExprMapKeyType, ConstantExpr> ExprConstants;

ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C, const Type *Ty) {

  // Look up the constant in the table first to ensure uniqueness
  vector<Constant*> argVec(1, C);
  const ExprMapKeyType &Key = make_pair(Opcode, argVec);
  ConstantExpr *Result = ExprConstants.get(Ty, Key);
  if (Result) return Result;
  
  // Its not in the table so create a new one and put it in the table.
  // Check the operands for consistency first
  assert(Opcode == Instruction::Cast ||
         (Opcode >= Instruction::FirstUnaryOp &&
          Opcode < Instruction::NumUnaryOps) &&
         "Invalid opcode in unary ConstantExpr!");

  // type of operand will not match result for Cast operation
  assert((Opcode == Instruction::Cast || Ty == C->getType()) &&
         "Type of operand in unary constant expression should match result");
  
  Result = new ConstantExpr(Opcode, C, Ty);
  ExprConstants.add(Ty, Key, Result);
  return Result;
}

ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
  // Look up the constant in the table first to ensure uniqueness
  vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  const ExprMapKeyType &Key = make_pair(Opcode, argVec);
  ConstantExpr *Result = ExprConstants.get(C1->getType(), Key);
  if (Result) return Result;
  
  // Its not in the table so create a new one and put it in the table.
  // Check the operands for consistency first
  assert((Opcode >= Instruction::FirstBinaryOp &&
          Opcode < Instruction::NumBinaryOps) &&
         "Invalid opcode in binary constant expression");

  assert(C1->getType() == C2->getType() &&
         "Operand types in binary constant expression should match");
  
  Result = new ConstantExpr(Opcode, C1, C2);
  ExprConstants.add(C1->getType(), Key, Result);
  return Result;
}

ConstantExpr *ConstantExpr::getGetElementPtr(Constant *C,
                                        const std::vector<Constant*> &IdxList) {
  const Type *Ty = C->getType();

  // Look up the constant in the table first to ensure uniqueness
  vector<Constant*> argVec(1, C);
  argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
  
  const ExprMapKeyType &Key = make_pair(Instruction::GetElementPtr, argVec);
  ConstantExpr *Result = ExprConstants.get(Ty, Key);
  if (Result) return Result;

  // Its not in the table so create a new one and put it in the table.
  // Check the operands for consistency first
  // 
  assert(isa<PointerType>(Ty) &&
         "Non-pointer type for constant GelElementPtr expression");

  // Check that the indices list is valid...
  std::vector<Value*> ValIdxList(IdxList.begin(), IdxList.end());
  const Type *DestTy = GetElementPtrInst::getIndexedType(Ty, ValIdxList, true);
  assert(DestTy && "Invalid index list for constant GelElementPtr expression");
  
  Result = new ConstantExpr(C, IdxList, PointerType::get(DestTy));
  ExprConstants.add(Ty, Key, Result);
  return Result;
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
  ExprConstants.remove(this);
  destroyConstantImpl();
}

const char *ConstantExpr::getOpcodeName() const {
  return Instruction::getOpcodeName(getOpcode());
}


//---- ConstantPointerRef::mutateReferences() implementation...
//
unsigned ConstantPointerRef::mutateReferences(Value *OldV, Value *NewV) {
  assert(getValue() == OldV && "Cannot mutate old value if I'm not using it!");
  GlobalValue *NewGV = cast<GlobalValue>(NewV);
  getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV);
  Operands[0] = NewGV;
  return 1;
}


//---- ConstantPointerExpr::mutateReferences() implementation...
//
unsigned ConstantExpr::mutateReferences(Value* OldV, Value *NewV) {
  unsigned NumReplaced = 0;
  Constant *NewC = cast<Constant>(NewV);
  for (unsigned i = 0, N = getNumOperands(); i != N; ++i)
    if (Operands[i] == OldV) {
      ++NumReplaced;
      Operands[i] = NewC;
    }
  return NumReplaced;
}