summaryrefslogtreecommitdiffstats
path: root/tools/analyze/analyze.cpp
blob: 7373741e2159679ac619a6fd58b902022c5f25b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//===----------------------------------------------------------------------===//
// The LLVM analyze utility
//
// This utility is designed to print out the results of running various analysis
// passes on a program.  This is useful for understanding a program, or for 
// debugging an analysis pass.
//
//  analyze --help           - Output information about command line switches
//  analyze --quiet          - Do not print analysis name before output
//
//===----------------------------------------------------------------------===//

#include "llvm/Module.h"
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/FindUnsafePointerTypes.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Support/InstIterator.h"
#include "Support/CommandLine.h"
#include <algorithm>

using std::ostream;

//===----------------------------------------------------------------------===//
// printPass - Specify how to print out a pass.  For most passes, the standard
// way of using operator<< works great, so we use it directly...
//
template<class PassType>
static void printPass(PassType &P, ostream &O, Module &M) {
  O << P;
}

template<class PassType>
static void printPass(PassType &P, ostream &O, Function &F) {
  O << P;
}

// Other classes require more information to print out information, so we
// specialize the template here for them...
//
template<>
static void printPass(LocalDataStructures &P, ostream &O, Module &M) {
  P.print(O, &M);
}
template<>
static void printPass(BUDataStructures &P, ostream &O, Module &M) {
  P.print(O, &M);
}

template<>
static void printPass(FindUsedTypes &FUT, ostream &O, Module &M) {
  FUT.printTypes(O, &M);
}

template<>
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O, Module &M) {
  FUPT.printResults(&M, O);
}



template <class PassType, class PassName>
class PassPrinter;  // Do not implement

template <class PassName>
class PassPrinter<Pass, PassName> : public Pass {
  const AnalysisID ID;
public:
  PassPrinter(AnalysisID id) : ID(id) {}

  const char *getPassName() const { return "IP Pass Printer"; }
  
  virtual bool run(Module &M) {
    printPass(getAnalysis<PassName>(ID), std::cout, M);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired(ID);
  }
};

template <class PassName>
class PassPrinter<FunctionPass, PassName> : public FunctionPass {
  const AnalysisID ID;
public:
  PassPrinter(AnalysisID id) : ID(id) {}

    const char *getPassName() const { return "Function Pass Printer"; }
  
  virtual bool runOnFunction(Function &F) {
    std::cout << "Running on function '" << F.getName() << "'\n";
    printPass(getAnalysis<PassName>(ID), std::cout, F);
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired(ID);
    AU.setPreservesAll();
  }
};



template <class PassType, class PassName, AnalysisID &ID>
Pass *New() {
  return new PassPrinter<PassType, PassName>(ID);
}
template <class PassType, class PassName>
Pass *New() {
  return new PassPrinter<PassType, PassName>(PassName::ID);
}


Pass *createPrintFunctionPass() {
  return new PrintFunctionPass("", &std::cout);
}
Pass *createPrintModulePass() {
  return new PrintModulePass(&std::cout);
}

struct InstForestHelper : public FunctionPass {
  const char *getPassName() const { return "InstForest Printer"; }

  void doit(Function &F) {
    std::cout << InstForest<char>(&F);
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }
};

struct IndVars : public FunctionPass {
  const char *getPassName() const { return "IndVars Printer"; }

  void doit(Function &F) {
    LoopInfo &LI = getAnalysis<LoopInfo>();
    for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
      if (PHINode *PN = dyn_cast<PHINode>(*I)) {
        InductionVariable IV(PN, &LI);
        if (IV.InductionType != InductionVariable::Unknown)
          std::cout << IV;
      }
  }

  void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired(LoopInfo::ID);
    AU.setPreservesAll();
  }
};

struct Exprs : public FunctionPass {
  const char *getPassName() const { return "Expression Printer"; }

  static void doit(Function &F) {
    std::cout << "Classified expressions for: " << F.getName() << "\n";
    for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
      std::cout << *I;
      
      if ((*I)->getType() == Type::VoidTy) continue;
      analysis::ExprType R = analysis::ClassifyExpression(*I);
      if (R.Var == *I) continue;  // Doesn't tell us anything
      
      std::cout << "\t\tExpr =";
      switch (R.ExprTy) {
      case analysis::ExprType::ScaledLinear:
        WriteAsOperand(std::cout << "(", (Value*)R.Scale) << " ) *";
        // fall through
      case analysis::ExprType::Linear:
        WriteAsOperand(std::cout << "(", R.Var) << " )";
        if (R.Offset == 0) break;
        else std::cout << " +";
        // fall through
      case analysis::ExprType::Constant:
        if (R.Offset) WriteAsOperand(std::cout, (Value*)R.Offset);
        else std::cout << " 0";
        break;
      }
      std::cout << "\n\n";
    }
  }
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }
};


template<class TraitClass>
struct PrinterPass : public TraitClass {
  PrinterPass() {}

  virtual bool runOnFunction(Function &F) {
    std::cout << "Running on function '" << F.getName() << "'\n";

    TraitClass::doit(F);
    return false;
  }
};


template<class PassClass>
Pass *Create() {
  return new PassClass();
}



enum Ans {
  // global analyses
  print, intervals, exprs, instforest, loops, indvars,

  // ip analyses
  printmodule, callgraph, datastructure, budatastructure,
  printusedtypes, unsafepointertypes,

  domset, idom, domtree, domfrontier,
  postdomset, postidom, postdomtree, postdomfrontier,
};

static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input file>"), cl::init("-"),
              cl::value_desc("filename"));

static cl::opt<bool> Quiet("q", cl::desc("Don't print analysis pass names"));
static cl::alias    QuietA("quiet", cl::desc("Alias for -q"),
                           cl::aliasopt(Quiet));

static cl::list<enum Ans>
AnalysesList(cl::desc("Analyses available:"),
             cl::values(
  clEnumVal(print          , "Print each function"),
  clEnumVal(intervals      , "Print Interval Partitions"),
  clEnumVal(exprs          , "Classify Expressions"),
  clEnumVal(instforest     , "Print Instruction Forest"),
  clEnumVal(loops          , "Print natural loops"),
  clEnumVal(indvars        , "Print Induction Variables"),

  clEnumVal(printmodule    , "Print entire module"),
  clEnumVal(callgraph      , "Print Call Graph"),
  clEnumVal(datastructure  , "Print data structure information"),
  clEnumVal(budatastructure, "Print bottom-up data structure information"),
  clEnumVal(printusedtypes , "Print types used by module"),
  clEnumVal(unsafepointertypes, "Print unsafe pointer types"),

  clEnumVal(domset         , "Print Dominator Sets"),
  clEnumVal(idom           , "Print Immediate Dominators"),
  clEnumVal(domtree        , "Print Dominator Tree"),
  clEnumVal(domfrontier    , "Print Dominance Frontier"),

  clEnumVal(postdomset     , "Print Postdominator Sets"),
  clEnumVal(postidom       , "Print Immediate Postdominators"),
  clEnumVal(postdomtree    , "Print Post Dominator Tree"),
  clEnumVal(postdomfrontier, "Print Postdominance Frontier"),
0));


struct {
  enum Ans AnID;
  Pass *(*PassConstructor)();
} AnTable[] = {
  // Global analyses
  { print             , createPrintFunctionPass                 },
  { intervals         , New<FunctionPass, IntervalPartition>    },
  { loops             , New<FunctionPass, LoopInfo>             },
  { instforest        , Create<PrinterPass<InstForestHelper> >  },
  { indvars           , Create<PrinterPass<IndVars> >           },
  { exprs             , Create<PrinterPass<Exprs> >             },

  // IP Analyses...
  { printmodule       , createPrintModulePass             },
  { printusedtypes    , New<Pass, FindUsedTypes>          },
  { callgraph         , New<Pass, CallGraph>              },
  { datastructure     , New<Pass, LocalDataStructures>    },
  { budatastructure   , New<Pass, BUDataStructures>       },
  { unsafepointertypes, New<Pass, FindUnsafePointerTypes> },

  // Dominator analyses
  { domset            , New<FunctionPass, DominatorSet>        },
  { idom              , New<FunctionPass, ImmediateDominators> },
  { domtree           , New<FunctionPass, DominatorTree>       },
  { domfrontier       , New<FunctionPass, DominanceFrontier>   },

  { postdomset        , New<FunctionPass, DominatorSet, DominatorSet::PostDomID> },
  { postidom          , New<FunctionPass, ImmediateDominators, ImmediateDominators::PostDomID> },
  { postdomtree       , New<FunctionPass, DominatorTree, DominatorTree::PostDomID> },
  { postdomfrontier   , New<FunctionPass, DominanceFrontier, DominanceFrontier::PostDomID> },
};

int main(int argc, char **argv) {
  cl::ParseCommandLineOptions(argc, argv, " llvm analysis printer tool\n");

  Module *CurMod = 0;
  try {
    CurMod = ParseBytecodeFile(InputFilename);
    if (!CurMod && !(CurMod = ParseAssemblyFile(InputFilename))){
      std::cerr << "Input file didn't read correctly.\n";
      return 1;
    }
  } catch (const ParseException &E) {
    std::cerr << E.getMessage() << "\n";
    return 1;
  }

  // Create a PassManager to hold and optimize the collection of passes we are
  // about to build...
  //
  PassManager Analyses;

  // Loop over all of the analyses looking for analyses to run...
  for (unsigned i = 0; i < AnalysesList.size(); ++i) {
    enum Ans AnalysisPass = AnalysesList[i];

    for (unsigned j = 0; j < sizeof(AnTable)/sizeof(AnTable[0]); ++j) {
      if (AnTable[j].AnID == AnalysisPass) {
        Analyses.add(AnTable[j].PassConstructor());
        break;                       // get an error later
      }
    }
  }  

  Analyses.run(*CurMod);

  delete CurMod;
  return 0;
}