summaryrefslogtreecommitdiffstats
path: root/tools/gccld/gccld.cpp
blob: 608a67e6300dd6819743e138aaf3fc0204501738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
//===- gccld.cpp - LLVM 'ld' compatible linker ----------------------------===//
//
// This utility is intended to be compatible with GCC, and follows standard
// system 'ld' conventions.  As such, the default output file is ./a.out.
// Additionally, this program outputs a shell script that is used to invoke LLI
// to execute the program.  In this manner, the generated executable (a.out for
// example), is directly executable, whereas the bytecode file actually lives in
// the a.out.bc file generated by this program.  Also, Force is on by default.
//
// Note that if someone (or a script) deletes the executable program generated,
// the .bc file will be left around.  Considering that this is a temporary hack,
// I'm not too worried about this.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Linker.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/FileUtilities.h"
#include "Support/SystemUtils.h"
#include "Support/CommandLine.h"
#include "Support/Signals.h"
#include "Config/unistd.h"
#include <fstream>
#include <memory>
#include <set>
#include <algorithm>

namespace {
  cl::list<std::string> 
  InputFilenames(cl::Positional, cl::desc("<input bytecode files>"),
                 cl::OneOrMore);

  cl::opt<std::string> 
  OutputFilename("o", cl::desc("Override output filename"), cl::init("a.out"),
                 cl::value_desc("filename"));

  cl::opt<bool>    
  Verbose("v", cl::desc("Print information about actions taken"));
  
  cl::list<std::string> 
  LibPaths("L", cl::desc("Specify a library search path"), cl::Prefix,
           cl::value_desc("directory"));

  cl::list<std::string> 
  Libraries("l", cl::desc("Specify libraries to link to"), cl::Prefix,
            cl::value_desc("library prefix"));

  cl::opt<bool>
  Strip("s", cl::desc("Strip symbol info from executable"));

  cl::opt<bool>
  NoInternalize("disable-internalize",
                cl::desc("Do not mark all symbols as internal"));
  static cl::alias
  ExportDynamic("export-dynamic", cl::desc("Alias for -disable-internalize"),
                cl::aliasopt(NoInternalize));

  cl::opt<bool>
  LinkAsLibrary("link-as-library", cl::desc("Link the .bc files together as a"
                                            " library, not an executable"));

  cl::opt<bool>    
  Native("native", cl::desc("Generate a native binary instead of a shell script"));
  
  // Compatibility options that are ignored, but support by LD
  cl::opt<std::string>
  CO3("soname", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<std::string>
  CO4("version-script", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<bool>
  CO5("eh-frame-hdr", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<bool>
  CO6("r", cl::Hidden, cl::desc("Compatibility option: ignored"));
}

// FileExists - Return true if the specified string is an openable file...
static inline bool FileExists(const std::string &FN) {
  return access(FN.c_str(), F_OK) != -1;
}


// LoadObject - Read the specified "object file", which should not search the
// library path to find it.
static inline std::auto_ptr<Module> LoadObject(std::string FN,
                                               std::string &OutErrorMessage) {
  if (Verbose) std::cerr << "Loading '" << FN << "'\n";
  if (!FileExists(FN)) {
    // Attempt to load from the LLVM_LIB_SEARCH_PATH directory... if we would
    // otherwise fail.  This is used to locate objects like crtend.o.
    //
    char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH");
    if (SearchPath && FileExists(std::string(SearchPath)+"/"+FN))
      FN = std::string(SearchPath)+"/"+FN;
    else {
      OutErrorMessage = "could not find input file '" + FN + "'!";
      return std::auto_ptr<Module>();
    }
  }

  std::string ErrorMessage;
  Module *Result = ParseBytecodeFile(FN, &ErrorMessage);
  if (Result) return std::auto_ptr<Module>(Result);

  OutErrorMessage = "Bytecode file '" + FN + "' corrupt!";
  if (ErrorMessage.size()) OutErrorMessage += ": " + ErrorMessage;
  return std::auto_ptr<Module>();
}


static Module *LoadSingleLibraryObject(const std::string &Filename) {
  std::string ErrorMessage;
  std::auto_ptr<Module> M = LoadObject(Filename, ErrorMessage);
  if (M.get() == 0 && Verbose) {
    std::cerr << "Error loading '" + Filename + "'";
    if (!ErrorMessage.empty()) std::cerr << ": " << ErrorMessage;
    std::cerr << "\n";
  }
  
  return M.release();
}

// IsArchive -  Returns true iff FILENAME appears to be the name of an ar
// archive file. It determines this by checking the magic string at the
// beginning of the file.
static bool IsArchive(const std::string &filename) {
  std::string ArchiveMagic("!<arch>\012");
  char buf[1 + ArchiveMagic.size()];
  std::ifstream f(filename.c_str());
  f.read(buf, ArchiveMagic.size());
  buf[ArchiveMagic.size()] = '\0';
  return ArchiveMagic == buf;
}

// LoadLibraryExactName - This looks for a file with a known name and tries to
// load it, similarly to LoadLibraryFromDirectory(). 
static inline bool LoadLibraryExactName(const std::string &FileName,
    std::vector<Module*> &Objects, bool &isArchive) {
  if (Verbose) std::cerr << "  Considering '" << FileName << "'\n";
  if (FileExists(FileName)) {
	if (IsArchive(FileName)) {
      std::string ErrorMessage;
      if (Verbose) std::cerr << "  Loading '" << FileName << "'\n";
      if (!ReadArchiveFile(FileName, Objects, &ErrorMessage)) {
        isArchive = true;
        return false;           // Success!
      }
      if (Verbose) {
        std::cerr << "  Error loading archive '" + FileName + "'";
        if (!ErrorMessage.empty()) std::cerr << ": " << ErrorMessage;
        std::cerr << "\n";
      }
    } else {
      if (Module *M = LoadSingleLibraryObject(FileName)) {
        isArchive = false;
        Objects.push_back(M);
        return false;
      }
    }
  }
  return true;
}

// LoadLibrary - Try to load a library named LIBNAME that contains
// LLVM bytecode. If SEARCH is true, then search for a file named
// libLIBNAME.{a,so,bc} in the current library search path.  Otherwise,
// assume LIBNAME is the real name of the library file.  This method puts
// the loaded modules into the Objects list, and sets isArchive to true if
// a .a file was loaded. It returns true if no library is found or if an
// error occurs; otherwise it returns false.
//
static inline bool LoadLibrary(const std::string &LibName,
                               std::vector<Module*> &Objects, bool &isArchive,
                               bool search, std::string &ErrorMessage) {
  if (search) {
    // First, try the current directory. Then, iterate over the
    // directories in LibPaths, looking for a suitable match for LibName
    // in each one.
    for (unsigned NextLibPathIdx = 0; NextLibPathIdx != LibPaths.size();
         ++NextLibPathIdx) {
      std::string Directory = LibPaths[NextLibPathIdx] + "/";
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".a",
        Objects, isArchive))
          return false;
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".so",
        Objects, isArchive))
          return false;
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".bc",
        Objects, isArchive))
          return false;
    }
  } else {
    // If they said no searching, then assume LibName is the real name.
    if (!LoadLibraryExactName(LibName, Objects, isArchive))
      return false;
  }
  ErrorMessage = "error linking library '-l" + LibName+ "': library not found!";
  return true;
}

static void GetAllDefinedSymbols(Module *M, 
                                 std::set<std::string> &DefinedSymbols) {
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
      DefinedSymbols.insert(I->getName());
  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
    if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
      DefinedSymbols.insert(I->getName());
}

// GetAllUndefinedSymbols - This calculates the set of undefined symbols that
// still exist in an LLVM module.  This is a bit tricky because there may be two
// symbols with the same name, but different LLVM types that will be resolved to
// each other, but aren't currently (thus we need to treat it as resolved).
//
static void GetAllUndefinedSymbols(Module *M, 
                                   std::set<std::string> &UndefinedSymbols) {
  std::set<std::string> DefinedSymbols;
  UndefinedSymbols.clear();   // Start out empty
  
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (I->hasName()) {
      if (I->isExternal())
        UndefinedSymbols.insert(I->getName());
      else if (!I->hasInternalLinkage())
        DefinedSymbols.insert(I->getName());
    }
  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
    if (I->hasName()) {
      if (I->isExternal())
        UndefinedSymbols.insert(I->getName());
      else if (!I->hasInternalLinkage())
        DefinedSymbols.insert(I->getName());
    }
  
  // Prune out any defined symbols from the undefined symbols set...
  for (std::set<std::string>::iterator I = UndefinedSymbols.begin();
       I != UndefinedSymbols.end(); )
    if (DefinedSymbols.count(*I))
      UndefinedSymbols.erase(I++);  // This symbol really is defined!
    else
      ++I; // Keep this symbol in the undefined symbols list
}


static bool LinkLibrary(Module *M, const std::string &LibName,
                        bool search, std::string &ErrorMessage) {
  std::set<std::string> UndefinedSymbols;
  GetAllUndefinedSymbols(M, UndefinedSymbols);
  if (UndefinedSymbols.empty()) {
    if (Verbose) std::cerr << "  No symbols undefined, don't link library!\n";
    return false;  // No need to link anything in!
  }

  std::vector<Module*> Objects;
  bool isArchive;
  if (LoadLibrary(LibName, Objects, isArchive, search, ErrorMessage))
    return true;

  // Figure out which symbols are defined by all of the modules in the .a file
  std::vector<std::set<std::string> > DefinedSymbols;
  DefinedSymbols.resize(Objects.size());
  for (unsigned i = 0; i != Objects.size(); ++i)
    GetAllDefinedSymbols(Objects[i], DefinedSymbols[i]);

  bool Linked = true;
  while (Linked) {     // While we are linking in object files, loop.
    Linked = false;

    for (unsigned i = 0; i != Objects.size(); ++i) {
      // Consider whether we need to link in this module...  we only need to
      // link it in if it defines some symbol which is so far undefined.
      //
      const std::set<std::string> &DefSymbols = DefinedSymbols[i];

      bool ObjectRequired = false;
      for (std::set<std::string>::iterator I = UndefinedSymbols.begin(),
             E = UndefinedSymbols.end(); I != E; ++I)
        if (DefSymbols.count(*I)) {
          if (Verbose)
            std::cerr << "  Found object providing symbol '" << *I << "'...\n";
          ObjectRequired = true;
          break;
        }
      
      // We DO need to link this object into the program...
      if (ObjectRequired) {
        if (LinkModules(M, Objects[i], &ErrorMessage))
          return true;   // Couldn't link in the right object file...        
        
        // Since we have linked in this object, delete it from the list of
        // objects to consider in this archive file.
        std::swap(Objects[i], Objects.back());
        std::swap(DefinedSymbols[i], DefinedSymbols.back());
        Objects.pop_back();
        DefinedSymbols.pop_back();
        --i;   // Do not skip an entry
        
        // The undefined symbols set should have shrunk.
        GetAllUndefinedSymbols(M, UndefinedSymbols);
        Linked = true;  // We have linked something in!
      }
    }
  }
  
  return false;
}

static int PrintAndReturn(const char *progname, const std::string &Message,
                          const std::string &Extra = "") {
  std::cerr << progname << Extra << ": " << Message << "\n";
  return 1;
}

//
//
// Function: copy_env()
//
// Description:
//	This function takes an array of environment variables and makes a
//	copy of it.  This copy can then be manipulated any way the caller likes
//  without affecting the process's real environment.
//
// Inputs:
//  envp - An array of C strings containing an environment.
//
// Outputs:
//  None.
//
// Return value:
//  NULL - An error occurred.
//  Otherwise, a pointer to a new array of C strings is returned.  Every string
//  in the array is a duplicate of the one in the original array (i.e. we do
//  not copy the char *'s from one array to another).
//
static char **
copy_env (char ** const envp)
{
  // The new environment list
  char ** newenv;

  // The number of entries in the old environment list
  int entries;

  //
  // Count the number of entries in the old list;
  //
  for (entries = 0; envp[entries] != NULL; entries++)
  {
    ;
  }

  //
  // Add one more entry for the NULL pointer that ends the list.
  //
  ++entries;

  //
  // If there are no entries at all, just return NULL.
  //
  if (entries == 0)
  {
    return NULL;
  }

  //
  // Allocate a new environment list.
  //
  if ((newenv = new (char *) [entries]) == NULL)
  {
    return NULL;
  }

  //
  // Make a copy of the list.  Don't forget the NULL that ends the list.
  //
  entries = 0;
  while (envp[entries] != NULL)
  {
    newenv[entries] = new char[strlen (envp[entries]) + 1];
    strcpy (newenv[entries], envp[entries]);
    ++entries;
  }
  newenv[entries] = NULL;

  return newenv;
}


//
// Function: remove_env()
//
// Description:
//	Remove the specified environment variable from the environment array.
//
// Inputs:
//	name - The name of the variable to remove.  It cannot be NULL.
//	envp - The array of environment variables.  It cannot be NULL.
//
// Outputs:
//	envp - The pointer to the specified variable name is removed.
//
// Return value:
//	None.
//
// Notes:
//  This is mainly done because functions to remove items from the environment
//  are not available across all platforms.  In particular, Solaris does not
//  seem to have an unsetenv() function or a setenv() function (or they are
//  undocumented if they do exist).
//
static void
remove_env (const char * name, char ** const envp)
{
  // Pointer for scanning arrays
  register char * p;

  // Index for selecting elements of the environment array
  register int index;

  for (index=0; envp[index] != NULL; index++)
  {
    //
    // Find the first equals sign in the array and make it an EOS character.
    //
    p = strchr (envp[index], '=');
    if (p == NULL)
    {
      continue;
    }
    else
    {
      *p = '\0';
    }

    //
    // Compare the two strings.  If they are equal, zap this string.
    // Otherwise, restore it.
    //
    if (!strcmp (name, envp[index]))
    {
      *envp[index] = '\0';
    }
    else
    {
      *p = '=';
    }
  }

  return;
}


int main(int argc, char **argv, char ** envp) {
  cl::ParseCommandLineOptions(argc, argv, " llvm linker for GCC\n");

  std::string ErrorMessage;
  std::auto_ptr<Module> Composite(LoadObject(InputFilenames[0], ErrorMessage));
  if (Composite.get() == 0)
    return PrintAndReturn(argv[0], ErrorMessage);

  // We always look first in the current directory when searching for libraries.
  LibPaths.insert(LibPaths.begin(), ".");

  // If the user specied an extra search path in their environment, respect it.
  if (char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH"))
    LibPaths.push_back(SearchPath);

  for (unsigned i = 1; i < InputFilenames.size(); ++i) {
    // A user may specify an ar archive without -l, perhaps because it
    // is not installed as a library. Detect that and link the library.
    if (IsArchive(InputFilenames[i])) {
      if (Verbose) std::cerr << "Linking archive '" << InputFilenames[i]
                             << "'\n";
      if (LinkLibrary(Composite.get(), InputFilenames[i], false, ErrorMessage))
        return PrintAndReturn(argv[0], ErrorMessage,
                              ": error linking in '" + InputFilenames[i] + "'");
      continue;
    }

    std::auto_ptr<Module> M(LoadObject(InputFilenames[i], ErrorMessage));
    if (M.get() == 0)
      return PrintAndReturn(argv[0], ErrorMessage);

    if (Verbose) std::cerr << "Linking in '" << InputFilenames[i] << "'\n";

    if (LinkModules(Composite.get(), M.get(), &ErrorMessage))
      return PrintAndReturn(argv[0], ErrorMessage,
                            ": error linking in '" + InputFilenames[i] + "'");
  }

  // Remove any consecutive duplicates of the same library...
  Libraries.erase(std::unique(Libraries.begin(), Libraries.end()),
                  Libraries.end());

  // Link in all of the libraries next...
  for (unsigned i = 0; i != Libraries.size(); ++i) {
    if (Verbose) std::cerr << "Linking in library: -l" << Libraries[i] << "\n";
    if (LinkLibrary(Composite.get(), Libraries[i], true, ErrorMessage))
      return PrintAndReturn(argv[0], ErrorMessage);
  }

  // In addition to just linking the input from GCC, we also want to spiff it up
  // a little bit.  Do this now.
  //
  PassManager Passes;

  // Add an appropriate TargetData instance for this module...
  Passes.add(new TargetData("gccld", Composite.get()));

  // Linking modules together can lead to duplicated global constants, only keep
  // one copy of each constant...
  //
  Passes.add(createConstantMergePass());

  // If the -s command line option was specified, strip the symbols out of the
  // resulting program to make it smaller.  -s is a GCC option that we are
  // supporting.
  //
  if (Strip)
    Passes.add(createSymbolStrippingPass());

  // Often if the programmer does not specify proper prototypes for the
  // functions they are calling, they end up calling a vararg version of the
  // function that does not get a body filled in (the real function has typed
  // arguments).  This pass merges the two functions.
  //
  Passes.add(createFunctionResolvingPass());

  if (!NoInternalize) {
    // Now that composite has been compiled, scan through the module, looking
    // for a main function.  If main is defined, mark all other functions
    // internal.
    //
    Passes.add(createInternalizePass());
  }

  // Remove unused arguments from functions...
  //
  Passes.add(createDeadArgEliminationPass());

  // The FuncResolve pass may leave cruft around if functions were prototyped
  // differently than they were defined.  Remove this cruft.
  //
  Passes.add(createInstructionCombiningPass());

  // Delete basic blocks, which optimization passes may have killed...
  //
  Passes.add(createCFGSimplificationPass());

  // Now that we have optimized the program, discard unreachable functions...
  //
  Passes.add(createGlobalDCEPass());

  // Add the pass that writes bytecode to the output file...
  std::string RealBytecodeOutput = OutputFilename;
  if (!LinkAsLibrary) RealBytecodeOutput += ".bc";
  std::ofstream Out(RealBytecodeOutput.c_str());
  if (!Out.good())
    return PrintAndReturn(argv[0], "error opening '" + RealBytecodeOutput +
                                   "' for writing!");
  Passes.add(new WriteBytecodePass(&Out));        // Write bytecode to file...

  // Make sure that the Out file gets unlink'd from the disk if we get a SIGINT
  RemoveFileOnSignal(RealBytecodeOutput);

  // Run our queue of passes all at once now, efficiently.
  Passes.run(*Composite.get());
  Out.close();

  if (!LinkAsLibrary) {
    //
    // If the user wants to generate a native executable, compile it from the
    // bytecode file.
    //
    // Otherwise, create a script that will run the bytecode through the JIT.
    //
    if (Native)
    {
      //
      // Remove these environment variables from the environment of the
      // programs that we will execute.  It appears that GCC sets these
      // environment variables so that the programs it uses can configure
      // themselves identically.
      //
      // However, when we invoke GCC below, we want it to use its  normal
      // configuration.  Hence, we must sanitize it's environment.
      //
      char ** clean_env = copy_env (envp);
      if (clean_env == NULL)
      {
        return PrintAndReturn (argv[0], "Failed to duplicate environment");
      }
      remove_env ("LIBRARY_PATH", clean_env);
      remove_env ("COLLECT_GCC_OPTIONS", clean_env);
      remove_env ("GCC_EXEC_PREFIX", clean_env);
      remove_env ("COMPILER_PATH", clean_env);
      remove_env ("COLLECT_GCC", clean_env);

      //
      // Determine the locations of the llc and gcc programs.
      //
      std::string llc=FindExecutable ("llc", argv[0]);
      std::string gcc=FindExecutable ("gcc", argv[0]);
      if (llc.empty())
      {
        return PrintAndReturn (argv[0], "Failed to find llc");
      }

      if (gcc.empty())
      {
        return PrintAndReturn (argv[0], "Failed to find gcc");
      }

      //
      // Run LLC to convert the bytecode file into assembly code.
      //
      const char * cmd[8];
      std::string AssemblyFile = OutputFilename + ".s";

      cmd[0] =  llc.c_str();
      cmd[1] =  "-f";
      cmd[2] =  "-o";
      cmd[3] =  AssemblyFile.c_str();
      cmd[4] =  RealBytecodeOutput.c_str();
      cmd[5] =  NULL;
      if ((ExecWait (cmd, clean_env)) == -1)
      {
        return PrintAndReturn (argv[0], "Failed to compile bytecode");
      }

      //
      // Run GCC to assemble and link the program into native code.
      //
      // Note:
      //  We can't just assemble and link the file with the system assembler
      //  and linker because we don't know where to put the _start symbol.
      //  GCC mysteriously knows how to do it.
      //
      cmd[0] =  gcc.c_str();
      cmd[1] =  "-o";
      cmd[2] =  OutputFilename.c_str();
      cmd[3] =  AssemblyFile.c_str();
      cmd[4] =  NULL;
      if ((ExecWait (cmd, clean_env)) == -1)
      {
        return PrintAndReturn (argv[0], "Failed to link native code file");
      }

      //
      // The assembly file is no longer needed.  Remove it, but do not exit
      // if we fail to unlink it.
      //
      if (((access (AssemblyFile.c_str(), F_OK)) != -1) &&
          ((unlink (AssemblyFile.c_str())) == -1))
      {
        std::cerr << "Warning: Failed to unlink " << AssemblyFile << "\n";
      }
    }
    else
    {
      // Output the script to start the program...
      std::ofstream Out2(OutputFilename.c_str());
      if (!Out2.good())
        return PrintAndReturn(argv[0], "error opening '" + OutputFilename +
                                       "' for writing!");
      Out2 << "#!/bin/sh\nlli -q $0.bc $*\n";
      Out2.close();
    }
  
    // Make the script executable...
    MakeFileExecutable (OutputFilename);

    // Make the bytecode file readable and directly executable in LLEE as well
    MakeFileExecutable (RealBytecodeOutput);
    MakeFileReadable   (RealBytecodeOutput);
  }

  return 0;
}