1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
//===- MultiJITTest.cpp - Unit tests for instantiating multiple JITs ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <vector>
using namespace llvm;
namespace {
// ARM, PowerPC and SystemZ tests disabled pending fix for PR10783.
#if !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__) \
&& !defined(__aarch64__)
bool LoadAssemblyInto(Module *M, const char *assembly) {
SMDiagnostic Error;
bool success =
nullptr != ParseAssemblyString(assembly, M, Error, M->getContext());
std::string errMsg;
raw_string_ostream os(errMsg);
Error.print("", os);
EXPECT_TRUE(success) << os.str();
return success;
}
void createModule1(LLVMContext &Context1, Module *&M1, Function *&FooF1) {
M1 = new Module("test1", Context1);
LoadAssemblyInto(M1,
"define i32 @add1(i32 %ArgX1) { "
"entry: "
" %addresult = add i32 1, %ArgX1 "
" ret i32 %addresult "
"} "
" "
"define i32 @foo1() { "
"entry: "
" %add1 = call i32 @add1(i32 10) "
" ret i32 %add1 "
"} ");
FooF1 = M1->getFunction("foo1");
}
void createModule2(LLVMContext &Context2, Module *&M2, Function *&FooF2) {
M2 = new Module("test2", Context2);
LoadAssemblyInto(M2,
"define i32 @add2(i32 %ArgX2) { "
"entry: "
" %addresult = add i32 2, %ArgX2 "
" ret i32 %addresult "
"} "
" "
"define i32 @foo2() { "
"entry: "
" %add2 = call i32 @add2(i32 10) "
" ret i32 %add2 "
"} ");
FooF2 = M2->getFunction("foo2");
}
TEST(MultiJitTest, EagerMode) {
LLVMContext Context1;
Module *M1 = nullptr;
Function *FooF1 = nullptr;
createModule1(Context1, M1, FooF1);
LLVMContext Context2;
Module *M2 = nullptr;
Function *FooF2 = nullptr;
createModule2(Context2, M2, FooF2);
// Now we create the JIT in eager mode
std::unique_ptr<ExecutionEngine> EE1(EngineBuilder(M1).create());
EE1->DisableLazyCompilation(true);
std::unique_ptr<ExecutionEngine> EE2(EngineBuilder(M2).create());
EE2->DisableLazyCompilation(true);
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv1 = EE1->runFunction(FooF1, noargs);
GenericValue gv2 = EE2->runFunction(FooF2, noargs);
// Import result of execution:
EXPECT_EQ(gv1.IntVal, 11);
EXPECT_EQ(gv2.IntVal, 12);
EE1->freeMachineCodeForFunction(FooF1);
EE2->freeMachineCodeForFunction(FooF2);
}
TEST(MultiJitTest, LazyMode) {
LLVMContext Context1;
Module *M1 = nullptr;
Function *FooF1 = nullptr;
createModule1(Context1, M1, FooF1);
LLVMContext Context2;
Module *M2 = nullptr;
Function *FooF2 = nullptr;
createModule2(Context2, M2, FooF2);
// Now we create the JIT in lazy mode
std::unique_ptr<ExecutionEngine> EE1(EngineBuilder(M1).create());
EE1->DisableLazyCompilation(false);
std::unique_ptr<ExecutionEngine> EE2(EngineBuilder(M2).create());
EE2->DisableLazyCompilation(false);
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv1 = EE1->runFunction(FooF1, noargs);
GenericValue gv2 = EE2->runFunction(FooF2, noargs);
// Import result of execution:
EXPECT_EQ(gv1.IntVal, 11);
EXPECT_EQ(gv2.IntVal, 12);
EE1->freeMachineCodeForFunction(FooF1);
EE2->freeMachineCodeForFunction(FooF2);
}
extern "C" {
extern void *getPointerToNamedFunction(const char *Name);
}
TEST(MultiJitTest, JitPool) {
LLVMContext Context1;
Module *M1 = nullptr;
Function *FooF1 = nullptr;
createModule1(Context1, M1, FooF1);
LLVMContext Context2;
Module *M2 = nullptr;
Function *FooF2 = nullptr;
createModule2(Context2, M2, FooF2);
// Now we create two JITs
std::unique_ptr<ExecutionEngine> EE1(EngineBuilder(M1).create());
std::unique_ptr<ExecutionEngine> EE2(EngineBuilder(M2).create());
Function *F1 = EE1->FindFunctionNamed("foo1");
void *foo1 = EE1->getPointerToFunction(F1);
Function *F2 = EE2->FindFunctionNamed("foo2");
void *foo2 = EE2->getPointerToFunction(F2);
// Function in M1
EXPECT_EQ(getPointerToNamedFunction("foo1"), foo1);
// Function in M2
EXPECT_EQ(getPointerToNamedFunction("foo2"), foo2);
// Symbol search
intptr_t
sa = (intptr_t)getPointerToNamedFunction("getPointerToNamedFunction");
EXPECT_TRUE(sa != 0);
intptr_t fa = (intptr_t)&getPointerToNamedFunction;
EXPECT_TRUE(fa != 0);
#ifdef __i386__
// getPointerToNamedFunction might be indirect jump on Win32 --enable-shared.
// FF 25 <disp32>: jmp *(pointer to IAT)
if (sa != fa && memcmp((char *)fa, "\xFF\x25", 2) == 0) {
fa = *(intptr_t *)(fa + 2); // Address to IAT
EXPECT_TRUE(fa != 0);
fa = *(intptr_t *)fa; // Bound value of IAT
}
#elif defined(__x86_64__)
// getPointerToNamedFunction might be indirect jump
// on Win32 x64 --enable-shared.
// FF 25 <pcrel32>: jmp *(RIP + pointer to IAT)
if (sa != fa && memcmp((char *)fa, "\xFF\x25", 2) == 0) {
fa += *(int32_t *)(fa + 2) + 6; // Address to IAT(RIP)
fa = *(intptr_t *)fa; // Bound value of IAT
}
#endif
EXPECT_TRUE(sa == fa);
}
#endif // !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
} // anonymous namespace
|