1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif
#include <string>
#include <iterator>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/type_traits.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/message_lite.h>
namespace google {
namespace upb {
namespace google_opensource {
class GMR_Handlers;
} // namespace google_opensource
} // namespace upb
namespace protobuf {
class Message;
namespace internal {
static const int kMinRepeatedFieldAllocationSize = 4;
// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
return std::distance(begin, end);
}
template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
std::input_iterator_tag) {
return -1;
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::iterator_category Category;
return CalculateReserve(begin, end, Category());
}
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField {
public:
RepeatedField();
RepeatedField(const RepeatedField& other);
template <typename Iter>
RepeatedField(Iter begin, const Iter& end);
~RepeatedField();
RepeatedField& operator=(const RepeatedField& other);
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
void Set(int index, const Element& value);
void Add(const Element& value);
Element* Add();
// Remove the last element in the array.
void RemoveLast();
// Extract elements with indices in "[start .. start+num-1]".
// Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
void Clear();
void MergeFrom(const RepeatedField& other);
void CopyFrom(const RepeatedField& other);
// Reserve space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resize the RepeatedField to a new, smaller size. This is O(1).
void Truncate(int new_size);
void AddAlreadyReserved(const Element& value);
Element* AddAlreadyReserved();
int Capacity() const;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(int new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swap entire contents with "other".
void Swap(RepeatedField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef Element* iterator;
typedef const Element* const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
int SpaceUsedExcludingSelf() const;
private:
static const int kInitialSize = 0;
Element* elements_;
int current_size_;
int total_size_;
// Move the contents of |from| into |to|, possibly clobbering |from| in the
// process. For primitive types this is just a memcpy(), but it could be
// specialized for non-primitive types to, say, swap each element instead.
void MoveArray(Element to[], Element from[], int size);
// Copy the elements of |from| into |to|.
void CopyArray(Element to[], const Element from[], int size);
};
namespace internal {
template <typename It> class RepeatedPtrIterator;
template <typename It, typename VoidPtr> class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// This is a helper template to copy an array of elements effeciently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
bool HasTrivialCopy = has_trivial_copy<Element>::value>
struct ElementCopier {
void operator()(Element to[], const Element from[], int array_size);
};
} // namespace internal
namespace internal {
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// typedef MyType Type;
// static Type* New();
// static void Delete(Type*);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsed(const Type&);
// };
class LIBPROTOBUF_EXPORT RepeatedPtrFieldBase {
protected:
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class GeneratedMessageReflection;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to
// implement SpaceUsed(), and thus need to call SpaceUsedExcludingSelf()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make
// use of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// To parse directly into a proto2 generated class, the upb class GMR_Handlers
// needs to be able to modify a RepeatedPtrFieldBase directly.
friend class LIBPROTOBUF_EXPORT upb::google_opensource::GMR_Handlers;
RepeatedPtrFieldBase();
// Must be called from destructor.
template <typename TypeHandler>
void Destroy();
bool empty() const;
int size() const;
template <typename TypeHandler>
const typename TypeHandler::Type& Get(int index) const;
template <typename TypeHandler>
typename TypeHandler::Type* Mutable(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Add();
template <typename TypeHandler>
void RemoveLast();
template <typename TypeHandler>
void Clear();
template <typename TypeHandler>
void MergeFrom(const RepeatedPtrFieldBase& other);
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other);
void CloseGap(int start, int num) {
// Close up a gap of "num" elements starting at offset "start".
for (int i = start + num; i < allocated_size_; ++i)
elements_[i - num] = elements_[i];
current_size_ -= num;
allocated_size_ -= num;
}
void Reserve(int new_size);
int Capacity() const;
// Used for constructing iterators.
void* const* raw_data() const;
void** raw_mutable_data() const;
template <typename TypeHandler>
typename TypeHandler::Type** mutable_data();
template <typename TypeHandler>
const typename TypeHandler::Type* const* data() const;
void Swap(RepeatedPtrFieldBase* other);
void SwapElements(int index1, int index2);
template <typename TypeHandler>
int SpaceUsedExcludingSelf() const;
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns NULL.
template <typename TypeHandler>
typename TypeHandler::Type* AddFromCleared();
template <typename TypeHandler>
void AddAllocated(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLast();
int ClearedCount() const;
template <typename TypeHandler>
void AddCleared(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseCleared();
private:
static const int kInitialSize = 0;
void** elements_;
int current_size_;
int allocated_size_;
int total_size_;
template <typename TypeHandler>
static inline typename TypeHandler::Type* cast(void* element) {
return reinterpret_cast<typename TypeHandler::Type*>(element);
}
template <typename TypeHandler>
static inline const typename TypeHandler::Type* cast(const void* element) {
return reinterpret_cast<const typename TypeHandler::Type*>(element);
}
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};
template <typename GenericType>
class GenericTypeHandler {
public:
typedef GenericType Type;
static GenericType* New() { return new GenericType; }
static void Delete(GenericType* value) { delete value; }
static void Clear(GenericType* value) { value->Clear(); }
static void Merge(const GenericType& from, GenericType* to) {
to->MergeFrom(from);
}
static int SpaceUsed(const GenericType& value) { return value.SpaceUsed(); }
static const Type& default_instance() { return Type::default_instance(); }
};
template <>
inline void GenericTypeHandler<MessageLite>::Merge(
const MessageLite& from, MessageLite* to) {
to->CheckTypeAndMergeFrom(from);
}
template <>
inline const MessageLite& GenericTypeHandler<MessageLite>::default_instance() {
// Yes, the behavior of the code is undefined, but this function is only
// called when we're already deep into the world of undefined, because the
// caller called Get(index) out of bounds.
MessageLite* null = NULL;
return *null;
}
template <>
inline const Message& GenericTypeHandler<Message>::default_instance() {
// Yes, the behavior of the code is undefined, but this function is only
// called when we're already deep into the world of undefined, because the
// caller called Get(index) out of bounds.
Message* null = NULL;
return *null;
}
// HACK: If a class is declared as DLL-exported in MSVC, it insists on
// generating copies of all its methods -- even inline ones -- to include
// in the DLL. But SpaceUsed() calls StringSpaceUsedExcludingSelf() which
// isn't in the lite library, therefore the lite library cannot link if
// StringTypeHandler is exported. So, we factor out StringTypeHandlerBase,
// export that, then make StringTypeHandler be a subclass which is NOT
// exported.
// TODO(kenton): There has to be a better way.
class LIBPROTOBUF_EXPORT StringTypeHandlerBase {
public:
typedef string Type;
static string* New();
static void Delete(string* value);
static void Clear(string* value) { value->clear(); }
static void Merge(const string& from, string* to) { *to = from; }
static const Type& default_instance() {
return ::google::protobuf::internal::GetEmptyString();
}
};
class StringTypeHandler : public StringTypeHandlerBase {
public:
static int SpaceUsed(const string& value) {
return sizeof(value) + StringSpaceUsedExcludingSelf(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField : public internal::RepeatedPtrFieldBase {
public:
RepeatedPtrField();
RepeatedPtrField(const RepeatedPtrField& other);
template <typename Iter>
RepeatedPtrField(Iter begin, const Iter& end);
~RepeatedPtrField();
RepeatedPtrField& operator=(const RepeatedPtrField& other);
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
Element* Add();
// Remove the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Delete elements with indices in the range [start .. start+num-1].
// Caution: implementation moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
void Clear();
void MergeFrom(const RepeatedPtrField& other);
void CopyFrom(const RepeatedPtrField& other);
// Reserve space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element** mutable_data();
const Element* const* data() const;
// Swap entire contents with "other".
void Swap(RepeatedPtrField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef internal::RepeatedPtrIterator<Element> iterator;
typedef internal::RepeatedPtrIterator<const Element> const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Custom STL-like iterator that iterates over and returns the underlying
// pointers to Element rather than Element itself.
typedef internal::RepeatedPtrOverPtrsIterator<Element, void*>
pointer_iterator;
typedef internal::RepeatedPtrOverPtrsIterator<const Element, const void*>
const_pointer_iterator;
pointer_iterator pointer_begin();
const_pointer_iterator pointer_begin() const;
pointer_iterator pointer_end();
const_pointer_iterator pointer_end() const;
// Returns (an estimate of) the number of bytes used by the repeated field,
// excluding sizeof(*this).
int SpaceUsedExcludingSelf() const;
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it sometimes
// does here at Google -- the following methods may be useful.
// Add an already-allocated object, passing ownership to the
// RepeatedPtrField.
void AddAllocated(Element* value);
// Remove the last element and return it, passing ownership to the caller.
// Requires: size() > 0
Element* ReleaseLast();
// Extract elements with indices in the range "[start .. start+num-1]".
// The caller assumes ownership of the extracted elements and is responsible
// for deleting them when they are no longer needed.
// If "elements" is non-NULL, then pointers to the extracted elements
// are stored in "elements[0 .. num-1]" for the convenience of the caller.
// If "elements" is NULL, then the caller must use some other mechanism
// to perform any further operations (like deletion) on these elements.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element** elements);
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Hardcore programs may choose to manipulate these cleared objects
// to better optimize memory management using the following routines.
// Get the number of cleared objects that are currently being kept
// around for reuse.
int ClearedCount() const;
// Add an element to the pool of cleared objects, passing ownership to
// the RepeatedPtrField. The element must be cleared prior to calling
// this method.
void AddCleared(Element* value);
// Remove a single element from the cleared pool and return it, passing
// ownership to the caller. The element is guaranteed to be cleared.
// Requires: ClearedCount() > 0
Element* ReleaseCleared();
protected:
// Note: RepeatedPtrField SHOULD NOT be subclassed by users. We only
// subclass it in one place as a hack for compatibility with proto1. The
// subclass needs to know about TypeHandler in order to call protected
// methods on RepeatedPtrFieldBase.
class TypeHandler;
};
// implementation ====================================================
template <typename Element>
inline RepeatedField<Element>::RepeatedField()
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
CopyFrom(other);
}
template <typename Element>
template <typename Iter>
inline RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
Reserve(reserve);
for (; begin != end; ++begin) {
AddAlreadyReserved(*begin);
}
} else {
for (; begin != end; ++begin) {
Add(*begin);
}
}
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
delete [] elements_;
}
template <typename Element>
inline RepeatedField<Element>&
RepeatedField<Element>::operator=(const RepeatedField& other) {
if (this != &other)
CopyFrom(other);
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return current_size_ == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return total_size_;
}
template<typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
GOOGLE_DCHECK_LT(size(), Capacity());
elements_[current_size_++] = value;
}
template<typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
GOOGLE_DCHECK_LT(size(), Capacity());
return &elements_[current_size_++];
}
template<typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
GOOGLE_DCHECK_GE(new_size, 0);
if (new_size > size()) {
Reserve(new_size);
std::fill(&elements_[current_size_], &elements_[new_size], value);
}
current_size_ = new_size;
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return elements_[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return elements_ + index;
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
elements_[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
if (current_size_ == total_size_) Reserve(total_size_ + 1);
elements_[current_size_++] = value;
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() {
if (current_size_ == total_size_) Reserve(total_size_ + 1);
return &elements_[current_size_++];
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
--current_size_;
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(
int start, int num, Element* elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, this->size());
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i)
elements[i] = this->Get(i + start);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < this->size(); ++i)
this->Set(i - num, this->Get(i));
this->Truncate(this->size() - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
current_size_ = 0;
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
GOOGLE_CHECK_NE(&other, this);
if (other.current_size_ != 0) {
Reserve(current_size_ + other.current_size_);
CopyArray(elements_ + current_size_, other.elements_, other.current_size_);
current_size_ += other.current_size_;
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
return elements_;
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
return elements_;
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
Element* swap_elements = elements_;
int swap_current_size = current_size_;
int swap_total_size = total_size_;
elements_ = other->elements_;
current_size_ = other->current_size_;
total_size_ = other->total_size_;
other->elements_ = swap_elements;
other->current_size_ = swap_current_size;
other->total_size_ = swap_total_size;
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements_[index1], elements_[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::end() {
return elements_ + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
return elements_ + current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::SpaceUsedExcludingSelf() const {
return (elements_ != NULL) ? total_size_ * sizeof(elements_[0]) : 0;
}
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Element* old_elements = elements_;
total_size_ = max(google::protobuf::internal::kMinRepeatedFieldAllocationSize,
max(total_size_ * 2, new_size));
elements_ = new Element[total_size_];
if (old_elements != NULL) {
MoveArray(elements_, old_elements, current_size_);
delete [] old_elements;
}
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
GOOGLE_DCHECK_LE(new_size, current_size_);
current_size_ = new_size;
}
template <typename Element>
inline void RepeatedField<Element>::MoveArray(
Element to[], Element from[], int array_size) {
CopyArray(to, from, array_size);
}
template <typename Element>
inline void RepeatedField<Element>::CopyArray(
Element to[], const Element from[], int array_size) {
internal::ElementCopier<Element>()(to, from, array_size);
}
namespace internal {
template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(
Element to[], const Element from[], int array_size) {
std::copy(from, from + array_size, to);
}
template <typename Element>
struct ElementCopier<Element, true> {
void operator()(Element to[], const Element from[], int array_size) {
memcpy(to, from, array_size * sizeof(Element));
}
};
} // namespace internal
// -------------------------------------------------------------------
namespace internal {
inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
: elements_(NULL),
current_size_(0),
allocated_size_(0),
total_size_(kInitialSize) {
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Destroy() {
for (int i = 0; i < allocated_size_; i++) {
TypeHandler::Delete(cast<TypeHandler>(elements_[i]));
}
delete [] elements_;
}
inline bool RepeatedPtrFieldBase::empty() const {
return current_size_ == 0;
}
inline int RepeatedPtrFieldBase::size() const {
return current_size_;
}
template <typename TypeHandler>
inline const typename TypeHandler::Type&
RepeatedPtrFieldBase::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return *cast<TypeHandler>(elements_[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return cast<TypeHandler>(elements_[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add() {
if (current_size_ < allocated_size_) {
return cast<TypeHandler>(elements_[current_size_++]);
}
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
typename TypeHandler::Type* result = TypeHandler::New();
++allocated_size_;
elements_[current_size_++] = result;
return result;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
TypeHandler::Clear(cast<TypeHandler>(elements_[--current_size_]));
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Clear() {
for (int i = 0; i < current_size_; i++) {
TypeHandler::Clear(cast<TypeHandler>(elements_[i]));
}
current_size_ = 0;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
GOOGLE_CHECK_NE(&other, this);
Reserve(current_size_ + other.current_size_);
for (int i = 0; i < other.current_size_; i++) {
TypeHandler::Merge(other.template Get<TypeHandler>(i), Add<TypeHandler>());
}
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
if (&other == this) return;
RepeatedPtrFieldBase::Clear<TypeHandler>();
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
inline int RepeatedPtrFieldBase::Capacity() const {
return total_size_;
}
inline void* const* RepeatedPtrFieldBase::raw_data() const {
return elements_;
}
inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
return elements_;
}
template <typename TypeHandler>
inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<typename TypeHandler::Type**>(elements_);
}
template <typename TypeHandler>
inline const typename TypeHandler::Type* const*
RepeatedPtrFieldBase::data() const {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<const typename TypeHandler::Type* const*>(elements_);
}
inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements_[index1], elements_[index2]);
}
template <typename TypeHandler>
inline int RepeatedPtrFieldBase::SpaceUsedExcludingSelf() const {
int allocated_bytes =
(elements_ != NULL) ? total_size_ * sizeof(elements_[0]) : 0;
for (int i = 0; i < allocated_size_; ++i) {
allocated_bytes += TypeHandler::SpaceUsed(*cast<TypeHandler>(elements_[i]));
}
return allocated_bytes;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
if (current_size_ < allocated_size_) {
return cast<TypeHandler>(elements_[current_size_++]);
} else {
return NULL;
}
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocated(
typename TypeHandler::Type* value) {
// Make room for the new pointer.
if (current_size_ == total_size_) {
// The array is completely full with no cleared objects, so grow it.
Reserve(total_size_ + 1);
++allocated_size_;
} else if (allocated_size_ == total_size_) {
// There is no more space in the pointer array because it contains some
// cleared objects awaiting reuse. We don't want to grow the array in this
// case because otherwise a loop calling AddAllocated() followed by Clear()
// would leak memory.
TypeHandler::Delete(cast<TypeHandler>(elements_[current_size_]));
} else if (current_size_ < allocated_size_) {
// We have some cleared objects. We don't care about their order, so we
// can just move the first one to the end to make space.
elements_[allocated_size_] = elements_[current_size_];
++allocated_size_;
} else {
// There are no cleared objects.
++allocated_size_;
}
elements_[current_size_++] = value;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
typename TypeHandler::Type* result =
cast<TypeHandler>(elements_[--current_size_]);
--allocated_size_;
if (current_size_ < allocated_size_) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
elements_[current_size_] = elements_[allocated_size_];
}
return result;
}
inline int RepeatedPtrFieldBase::ClearedCount() const {
return allocated_size_ - current_size_;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::AddCleared(
typename TypeHandler::Type* value) {
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
elements_[allocated_size_++] = value;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
GOOGLE_DCHECK_GT(allocated_size_, current_size_);
return cast<TypeHandler>(elements_[--allocated_size_]);
}
} // namespace internal
// -------------------------------------------------------------------
template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
: public internal::GenericTypeHandler<Element> {
};
template <>
class RepeatedPtrField<string>::TypeHandler
: public internal::StringTypeHandler {
};
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField() {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
const RepeatedPtrField& other)
: RepeatedPtrFieldBase() {
CopyFrom(other);
}
template <typename Element>
template <typename Iter>
inline RepeatedPtrField<Element>::RepeatedPtrField(
Iter begin, const Iter& end) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
Reserve(reserve);
}
for (; begin != end; ++begin) {
*Add() = *begin;
}
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
Destroy<TypeHandler>();
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
const RepeatedPtrField& other) {
if (this != &other)
CopyFrom(other);
return *this;
}
template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
return RepeatedPtrFieldBase::empty();
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return RepeatedPtrFieldBase::size();
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
return RepeatedPtrFieldBase::Add<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
for (int i = 0; i < num; ++i)
delete RepeatedPtrFieldBase::Mutable<TypeHandler>(start + i);
ExtractSubrange(start, num, NULL);
}
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(
int start, int num, Element** elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i)
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
CloseGap(start, num);
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
RepeatedPtrFieldBase::Clear<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
return RepeatedPtrFieldBase::data<TypeHandler>();
}
template <typename Element>
void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
RepeatedPtrFieldBase::Swap(other);
}
template <typename Element>
void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
RepeatedPtrFieldBase::SwapElements(index1, index2);
}
template <typename Element>
inline int RepeatedPtrField<Element>::SpaceUsedExcludingSelf() const {
return RepeatedPtrFieldBase::SpaceUsedExcludingSelf<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
return RepeatedPtrFieldBase::ClearedCount();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
return RepeatedPtrFieldBase::Reserve(new_size);
}
template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
return RepeatedPtrFieldBase::Capacity();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template<typename Element>
class RepeatedPtrIterator
: public std::iterator<
std::random_access_iterator_tag, Element> {
public:
typedef RepeatedPtrIterator<Element> iterator;
typedef std::iterator<
std::random_access_iterator_tag, Element> superclass;
// Shadow the value_type in std::iterator<> because const_iterator::value_type
// needs to be T, not const T.
typedef typename remove_const<Element>::type value_type;
// Let the compiler know that these are type names, so we don't have to
// write "typename" in front of them everywhere.
typedef typename superclass::reference reference;
typedef typename superclass::pointer pointer;
typedef typename superclass::difference_type difference_type;
RepeatedPtrIterator() : it_(NULL) {}
explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
// Allow "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template<typename OtherElement>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
: it_(other.it_) {
// Force a compiler error if the other type is not convertible to ours.
if (false) {
implicit_cast<Element*, OtherElement*>(0);
}
}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() { ++it_; return *this; }
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() { --it_; return *this; }
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template<typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
void* const* it_;
};
// Provide an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator. It should either be "void *" for a mutable
// iterator, or "const void *" for a constant iterator.
template<typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator
: public std::iterator<std::random_access_iterator_tag, Element*> {
public:
typedef RepeatedPtrOverPtrsIterator<Element, VoidPtr> iterator;
typedef std::iterator<
std::random_access_iterator_tag, Element*> superclass;
// Shadow the value_type in std::iterator<> because const_iterator::value_type
// needs to be T, not const T.
typedef typename remove_const<Element*>::type value_type;
// Let the compiler know that these are type names, so we don't have to
// write "typename" in front of them everywhere.
typedef typename superclass::reference reference;
typedef typename superclass::pointer pointer;
typedef typename superclass::difference_type difference_type;
RepeatedPtrOverPtrsIterator() : it_(NULL) {}
explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element**>(it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() { ++it_; return *this; }
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() { --it_; return *this; }
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template<typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
VoidPtr* it_;
};
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
return const_pointer_iterator(const_cast<const void**>(raw_mutable_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
return const_pointer_iterator(
const_cast<const void**>(raw_mutable_data() + size()));
}
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// google::protobuf::RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// A back inserter for RepeatedField objects.
template<typename T> class RepeatedFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {
}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() {
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator++() {
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
// A back inserter for RepeatedPtrField objects.
template<typename T> class RepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
RepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
*field_->Add() = value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(
const T* const ptr_to_value) {
*field_->Add() = *ptr_to_value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// A back inserter for RepeatedPtrFields that inserts by transfering ownership
// of a pointer.
template<typename T> class AllocatedRepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit AllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T* const ptr_to_value) {
field_->AddAllocated(ptr_to_value);
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedPtrFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template<typename T> internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|