/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkString_DEFINED #define SkString_DEFINED #include "SkScalar.h" /* Some helper functions for C strings */ bool SkStrStartsWith(const char string[], const char prefix[]); bool SkStrEndsWith(const char string[], const char suffix[]); int SkStrStartsWithOneOf(const char string[], const char prefixes[]); #define SkStrAppendS32_MaxSize 11 char* SkStrAppendS32(char buffer[], int32_t); #define SkStrAppendS64_MaxSize 20 char* SkStrAppendS64(char buffer[], int64_t, int minDigits); /** * Floats have at most 8 significant digits, so we limit our %g to that. * However, the total string could be 15 characters: -1.2345678e-005 * * In theory we should only expect up to 2 digits for the exponent, but on * some platforms we have seen 3 (as in the example above). */ #define SkStrAppendScalar_MaxSize 15 /** * Write the scaler in decimal format into buffer, and return a pointer to * the next char after the last one written. Note: a terminating 0 is not * written into buffer, which must be at least SkStrAppendScalar_MaxSize. * Thus if the caller wants to add a 0 at the end, buffer must be at least * SkStrAppendScalar_MaxSize + 1 bytes large. */ #ifdef SK_SCALAR_IS_FLOAT #define SkStrAppendScalar SkStrAppendFloat #else #define SkStrAppendScalar SkStrAppendFixed #endif #ifdef SK_CAN_USE_FLOAT char* SkStrAppendFloat(char buffer[], float); #endif char* SkStrAppendFixed(char buffer[], SkFixed); /** \class SkString Light weight class for managing strings. Uses reference counting to make string assignments and copies very fast with no extra RAM cost. Assumes UTF8 encoding. */ class SkString { public: SkString(); explicit SkString(size_t len); explicit SkString(const char text[]); SkString(const char text[], size_t len); SkString(const SkString&); ~SkString(); bool isEmpty() const { return 0 == fRec->fLength; } size_t size() const { return (size_t) fRec->fLength; } const char* c_str() const { return fRec->data(); } char operator[](size_t n) const { return this->c_str()[n]; } bool equals(const SkString&) const; bool equals(const char text[]) const; bool equals(const char text[], size_t len) const; bool startsWith(const char prefix[]) const { return SkStrStartsWith(fRec->data(), prefix); } bool endsWith(const char suffix[]) const { return SkStrEndsWith(fRec->data(), suffix); } friend bool operator==(const SkString& a, const SkString& b) { return a.equals(b); } friend bool operator!=(const SkString& a, const SkString& b) { return !a.equals(b); } // these methods edit the string SkString& operator=(const SkString&); SkString& operator=(const char text[]); char* writable_str(); char& operator[](size_t n) { return this->writable_str()[n]; } void reset(); void resize(size_t len) { this->set(NULL, len); } void set(const SkString& src) { *this = src; } void set(const char text[]); void set(const char text[], size_t len); void setUTF16(const uint16_t[]); void setUTF16(const uint16_t[], size_t len); void insert(size_t offset, const SkString& src) { this->insert(offset, src.c_str(), src.size()); } void insert(size_t offset, const char text[]); void insert(size_t offset, const char text[], size_t len); void insertUnichar(size_t offset, SkUnichar); void insertS32(size_t offset, int32_t value); void insertS64(size_t offset, int64_t value, int minDigits = 0); void insertHex(size_t offset, uint32_t value, int minDigits = 0); void insertScalar(size_t offset, SkScalar); void append(const SkString& str) { this->insert((size_t)-1, str); } void append(const char text[]) { this->insert((size_t)-1, text); } void append(const char text[], size_t len) { this->insert((size_t)-1, text, len); } void appendUnichar(SkUnichar uni) { this->insertUnichar((size_t)-1, uni); } void appendS32(int32_t value) { this->insertS32((size_t)-1, value); } void appendS64(int64_t value, int minDigits = 0) { this->insertS64((size_t)-1, value, minDigits); } void appendHex(uint32_t value, int minDigits = 0) { this->insertHex((size_t)-1, value, minDigits); } void appendScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } void prepend(const SkString& str) { this->insert(0, str); } void prepend(const char text[]) { this->insert(0, text); } void prepend(const char text[], size_t len) { this->insert(0, text, len); } void prependUnichar(SkUnichar uni) { this->insertUnichar(0, uni); } void prependS32(int32_t value) { this->insertS32(0, value); } void prependS64(int32_t value, int minDigits = 0) { this->insertS64(0, value, minDigits); } void prependHex(uint32_t value, int minDigits = 0) { this->insertHex(0, value, minDigits); } void prependScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } void printf(const char format[], ...); void appendf(const char format[], ...); void prependf(const char format[], ...); void remove(size_t offset, size_t length); SkString& operator+=(const SkString& s) { this->append(s); return *this; } SkString& operator+=(const char text[]) { this->append(text); return *this; } SkString& operator+=(const char c) { this->append(&c, 1); return *this; } /** * Swap contents between this and other. This function is guaranteed * to never fail or throw. */ void swap(SkString& other); private: struct Rec { public: size_t fLength; int32_t fRefCnt; char fBeginningOfData; char* data() { return &fBeginningOfData; } const char* data() const { return &fBeginningOfData; } }; Rec* fRec; #ifdef SK_DEBUG const char* fStr; void validate() const; #else void validate() const {} #endif static const Rec gEmptyRec; static Rec* AllocRec(const char text[], size_t len); static Rec* RefRec(Rec*); }; class SkAutoUCS2 { public: SkAutoUCS2(const char utf8[]); ~SkAutoUCS2(); /** This returns the number of ucs2 characters */ int count() const { return fCount; } /** This returns a null terminated ucs2 string */ const uint16_t* getUCS2() const { return fUCS2; } private: int fCount; uint16_t* fUCS2; }; /// Creates a new string and writes into it using a printf()-style format. SkString SkStringPrintf(const char* format, ...); #endif