/* libs/graphics/sgl/SkDraw.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkDraw.h" #include "SkBlitter.h" #include "SkBounder.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkMaskFilter.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkRasterizer.h" #include "SkScan.h" #include "SkShader.h" #include "SkStroke.h" #include "SkTemplatesPriv.h" #include "SkUtils.h" #include "SkAutoKern.h" #include "SkBitmapProcShader.h" #include "SkDrawProcs.h" //#define TRACE_BITMAP_DRAWS class SkAutoRestoreBounder : SkNoncopyable { public: // note: initializing fBounder is done only to fix a warning SkAutoRestoreBounder() : fDraw(NULL), fBounder(NULL) {} ~SkAutoRestoreBounder() { if (fDraw) { fDraw->fBounder = fBounder; } } void clearBounder(const SkDraw* draw) { fDraw = const_cast(draw); fBounder = draw->fBounder; fDraw->fBounder = NULL; } private: SkDraw* fDraw; SkBounder* fBounder; }; static SkPoint* rect_points(SkRect& r, int index) { SkASSERT((unsigned)index < 2); return &((SkPoint*)(void*)&r)[index]; } /** Helper for allocating small blitters on the stack. */ #define kBlitterStorageLongCount (sizeof(SkBitmapProcShader) >> 2) class SkAutoBlitterChoose { public: SkAutoBlitterChoose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint) { fBlitter = SkBlitter::Choose(device, matrix, paint, fStorage, sizeof(fStorage)); } ~SkAutoBlitterChoose(); SkBlitter* operator->() { return fBlitter; } SkBlitter* get() const { return fBlitter; } private: SkBlitter* fBlitter; uint32_t fStorage[kBlitterStorageLongCount]; }; SkAutoBlitterChoose::~SkAutoBlitterChoose() { if ((void*)fBlitter == (void*)fStorage) { fBlitter->~SkBlitter(); } else { SkDELETE(fBlitter); } } class SkAutoBitmapShaderInstall { public: SkAutoBitmapShaderInstall(const SkBitmap& src, const SkPaint* paint) : fPaint((SkPaint*)paint) { fPrevShader = paint->getShader(); fPrevShader->safeRef(); fPaint->setShader(SkShader::CreateBitmapShader( src, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, fStorage, sizeof(fStorage))); } ~SkAutoBitmapShaderInstall() { SkShader* shader = fPaint->getShader(); fPaint->setShader(fPrevShader); fPrevShader->safeUnref(); if ((void*)shader == (void*)fStorage) { shader->~SkShader(); } else { SkDELETE(shader); } } private: SkPaint* fPaint; SkShader* fPrevShader; uint32_t fStorage[kBlitterStorageLongCount]; }; class SkAutoPaintStyleRestore { public: SkAutoPaintStyleRestore(const SkPaint& paint, SkPaint::Style style) : fPaint((SkPaint&)paint) { fStyle = paint.getStyle(); // record the old fPaint.setStyle(style); // change it to the specified style } ~SkAutoPaintStyleRestore() { fPaint.setStyle(fStyle); // restore the old } private: SkPaint& fPaint; SkPaint::Style fStyle; // illegal SkAutoPaintStyleRestore(const SkAutoPaintStyleRestore&); SkAutoPaintStyleRestore& operator=(const SkAutoPaintStyleRestore&); }; /////////////////////////////////////////////////////////////////////////////// SkDraw::SkDraw(const SkDraw& src) { memcpy(this, &src, sizeof(*this)); } /////////////////////////////////////////////////////////////////////////////// typedef void (*BitmapXferProc)(void* pixels, size_t bytes, uint32_t data); static void D_Clear_BitmapXferProc(void* pixels, size_t bytes, uint32_t) { sk_bzero(pixels, bytes); } static void D_Dst_BitmapXferProc(void*, size_t, uint32_t data) {} static void D32_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset32((uint32_t*)pixels, data, bytes >> 2); } static void D16_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset16((uint16_t*)pixels, data, bytes >> 1); } static void DA8_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { memset(pixels, data, bytes); } static BitmapXferProc ChooseBitmapXferProc(const SkBitmap& bitmap, const SkPaint& paint, uint32_t* data) { // todo: we can apply colorfilter up front if no shader, so we wouldn't // need to abort this fastpath if (paint.getShader() || paint.getColorFilter()) { return NULL; } SkXfermode::Mode mode; if (!SkXfermode::IsMode(paint.getXfermode(), &mode)) { return NULL; } SkColor color = paint.getColor(); // collaps modes based on color... if (SkXfermode::kSrcOver_Mode == mode) { unsigned alpha = SkColorGetA(color); if (0 == alpha) { mode = SkXfermode::kDst_Mode; } else if (0xFF == alpha) { mode = SkXfermode::kSrc_Mode; } } switch (mode) { case SkXfermode::kClear_Mode: // SkDebugf("--- D_Clear_BitmapXferProc\n"); return D_Clear_BitmapXferProc; // ignore data case SkXfermode::kDst_Mode: // SkDebugf("--- D_Dst_BitmapXferProc\n"); return D_Dst_BitmapXferProc; // ignore data case SkXfermode::kSrc_Mode: { /* should I worry about dithering for the lower depths? */ SkPMColor pmc = SkPreMultiplyColor(color); switch (bitmap.config()) { case SkBitmap::kARGB_8888_Config: if (data) { *data = pmc; } // SkDebugf("--- D32_Src_BitmapXferProc\n"); return D32_Src_BitmapXferProc; case SkBitmap::kARGB_4444_Config: if (data) { *data = SkPixel32ToPixel4444(pmc); } // SkDebugf("--- D16_Src_BitmapXferProc\n"); return D16_Src_BitmapXferProc; case SkBitmap::kRGB_565_Config: if (data) { *data = SkPixel32ToPixel16(pmc); } // SkDebugf("--- D16_Src_BitmapXferProc\n"); return D16_Src_BitmapXferProc; case SkBitmap::kA8_Config: if (data) { *data = SkGetPackedA32(pmc); } // SkDebugf("--- DA8_Src_BitmapXferProc\n"); return DA8_Src_BitmapXferProc; default: break; } break; } default: break; } return NULL; } static void CallBitmapXferProc(const SkBitmap& bitmap, const SkIRect& rect, BitmapXferProc proc, uint32_t procData) { int shiftPerPixel; switch (bitmap.config()) { case SkBitmap::kARGB_8888_Config: shiftPerPixel = 2; break; case SkBitmap::kARGB_4444_Config: case SkBitmap::kRGB_565_Config: shiftPerPixel = 1; break; case SkBitmap::kA8_Config: shiftPerPixel = 0; break; default: SkASSERT(!"Can't use xferproc on this config"); return; } uint8_t* pixels = (uint8_t*)bitmap.getPixels(); SkASSERT(pixels); const size_t rowBytes = bitmap.rowBytes(); const int widthBytes = rect.width() << shiftPerPixel; // skip down to the first scanline and X position pixels += rect.fTop * rowBytes + (rect.fLeft << shiftPerPixel); for (int scans = rect.height() - 1; scans >= 0; --scans) { proc(pixels, widthBytes, procData); pixels += rowBytes; } } void SkDraw::drawPaint(const SkPaint& paint) const { SkDEBUGCODE(this->validate();) if (fClip->isEmpty()) { return; } SkIRect devRect; devRect.set(0, 0, fBitmap->width(), fBitmap->height()); if (fBounder && !fBounder->doIRect(devRect)) { return; } /* If we don't have a shader (i.e. we're just a solid color) we may be faster to operate directly on the device bitmap, rather than invoking a blitter. Esp. true for xfermodes, which require a colorshader to be present, which is just redundant work. Since we're drawing everywhere in the clip, we don't have to worry about antialiasing. */ uint32_t procData = 0; // to avoid the warning BitmapXferProc proc = ChooseBitmapXferProc(*fBitmap, paint, &procData); if (proc) { if (D_Dst_BitmapXferProc == proc) { // nothing to do return; } SkRegion::Iterator iter(*fClip); while (!iter.done()) { CallBitmapXferProc(*fBitmap, iter.rect(), proc, procData); iter.next(); } } else { // normal case: use a blitter SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkScan::FillIRect(devRect, fClip, blitter.get()); } } /////////////////////////////////////////////////////////////////////////////// struct PtProcRec { SkCanvas::PointMode fMode; const SkPaint* fPaint; const SkRegion* fClip; // computed values SkFixed fRadius; typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count, SkBlitter*); bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix, const SkRegion* clip); Proc chooseProc(SkBlitter* blitter); }; static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fClip->isRect()); const SkIRect& r = rec.fClip->getBounds(); for (int i = 0; i < count; i++) { int x = SkScalarFloor(devPts[i].fX); int y = SkScalarFloor(devPts[i].fY); if (r.contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_pt_rect_16_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fClip->isRect()); const SkIRect& r = rec.fClip->getBounds(); uint32_t value; const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); SkASSERT(bitmap); uint16_t* addr = bitmap->getAddr16(0, 0); int rb = bitmap->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloor(devPts[i].fX); int y = SkScalarFloor(devPts[i].fY); if (r.contains(x, y)) { // *bitmap->getAddr16(x, y) = SkToU16(value); ((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value); } } } static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i++) { int x = SkScalarFloor(devPts[i].fX); int y = SkScalarFloor(devPts[i].fY); if (rec.fClip->contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::HairLine(devPts[i], devPts[i+1], rec.fClip, blitter); } } static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::HairLine(devPts[i], devPts[i+1], rec.fClip, blitter); } } // aa versions static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::AntiHairLine(devPts[i], devPts[i+1], rec.fClip, blitter); } } static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::AntiHairLine(devPts[i], devPts[i+1], rec.fClip, blitter); } } // square procs (strokeWidth > 0 but matrix is square-scale (sx == sy) static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::FillXRect(r, rec.fClip, blitter); } } static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::AntiFillXRect(r, rec.fClip, blitter); } } // If this guy returns true, then chooseProc() must return a valid proc bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint, const SkMatrix* matrix, const SkRegion* clip) { if (paint.getPathEffect()) { return false; } SkScalar width = paint.getStrokeWidth(); if (0 == width) { fMode = mode; fPaint = &paint; fClip = clip; fRadius = SK_Fixed1 >> 1; return true; } if (paint.getStrokeCap() != SkPaint::kRound_Cap && matrix->rectStaysRect() && SkCanvas::kPoints_PointMode == mode) { SkScalar sx = matrix->get(SkMatrix::kMScaleX); SkScalar sy = matrix->get(SkMatrix::kMScaleY); if (SkScalarNearlyZero(sx - sy)) { if (sx < 0) { sx = -sx; } fMode = mode; fPaint = &paint; fClip = clip; fRadius = SkScalarToFixed(SkScalarMul(width, sx)) >> 1; return true; } } return false; } PtProcRec::Proc PtProcRec::chooseProc(SkBlitter* blitter) { Proc proc = NULL; // for our arrays SkASSERT(0 == SkCanvas::kPoints_PointMode); SkASSERT(1 == SkCanvas::kLines_PointMode); SkASSERT(2 == SkCanvas::kPolygon_PointMode); SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode); // first check for hairlines if (0 == fPaint->getStrokeWidth()) { if (fPaint->isAntiAlias()) { static const Proc gAAProcs[] = { aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc }; proc = gAAProcs[fMode]; } else { if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) { uint32_t value; const SkBitmap* bm = blitter->justAnOpaqueColor(&value); if (bm && bm->config() == SkBitmap::kRGB_565_Config) { proc = bw_pt_rect_16_hair_proc; } else { proc = bw_pt_rect_hair_proc; } } else { static Proc gBWProcs[] = { bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc }; proc = gBWProcs[fMode]; } } } else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) { SkASSERT(SkCanvas::kPoints_PointMode == fMode); if (fPaint->isAntiAlias()) { proc = aa_square_proc; } else { proc = bw_square_proc; } } return proc; } static bool bounder_points(SkBounder* bounder, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint, const SkMatrix& matrix) { SkIRect ibounds; SkRect bounds; SkScalar inset = paint.getStrokeWidth(); bounds.set(pts, count); bounds.inset(-inset, -inset); matrix.mapRect(&bounds); bounds.roundOut(&ibounds); return bounder->doIRect(ibounds); } // each of these costs 8-bytes of stack space, so don't make it too large // must be even for lines/polygon to work #define MAX_DEV_PTS 32 void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) const { // if we're in lines mode, force count to be even if (SkCanvas::kLines_PointMode == mode) { count &= ~(size_t)1; } if ((long)count <= 0) { return; } SkAutoRestoreBounder arb; if (fBounder) { if (!bounder_points(fBounder, mode, count, pts, paint, *fMatrix)) { return; } // clear the bounder for the rest of this function, so we don't call it // again later if we happen to call ourselves for drawRect, drawPath, // etc. arb.clearBounder(this); } SkASSERT(pts != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } PtProcRec rec; if (rec.init(mode, paint, fMatrix, fClip)) { SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkPoint devPts[MAX_DEV_PTS]; const SkMatrix* matrix = fMatrix; SkBlitter* bltr = blitter.get(); PtProcRec::Proc proc = rec.chooseProc(bltr); // we have to back up subsequent passes if we're in polygon mode const size_t backup = (SkCanvas::kPolygon_PointMode == mode); do { size_t n = count; if (n > MAX_DEV_PTS) { n = MAX_DEV_PTS; } matrix->mapPoints(devPts, pts, n); proc(rec, devPts, n, bltr); pts += n - backup; SkASSERT(count >= n); count -= n; if (count > 0) { count += backup; } } while (count != 0); } else { switch (mode) { case SkCanvas::kPoints_PointMode: { // temporarily mark the paint as filling. SkAutoPaintStyleRestore restore(paint, SkPaint::kFill_Style); SkScalar width = paint.getStrokeWidth(); SkScalar radius = SkScalarHalf(width); if (paint.getStrokeCap() == SkPaint::kRound_Cap) { SkPath path; SkMatrix preMatrix; path.addCircle(0, 0, radius); for (size_t i = 0; i < count; i++) { preMatrix.setTranslate(pts[i].fX, pts[i].fY); // pass true for the last point, since we can modify // then path then this->drawPath(path, paint, &preMatrix, (count-1) == i); } } else { SkRect r; for (size_t i = 0; i < count; i++) { r.fLeft = pts[i].fX - radius; r.fTop = pts[i].fY - radius; r.fRight = r.fLeft + width; r.fBottom = r.fTop + width; this->drawRect(r, paint); } } break; } case SkCanvas::kLines_PointMode: case SkCanvas::kPolygon_PointMode: { count -= 1; SkPath path; SkPaint p(paint); p.setStyle(SkPaint::kStroke_Style); size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1; for (size_t i = 0; i < count; i += inc) { path.moveTo(pts[i]); path.lineTo(pts[i+1]); this->drawPath(path, p, NULL, true); path.rewind(); } break; } } } } static inline SkPoint* as_lefttop(SkRect* r) { return (SkPoint*)(void*)r; } static inline SkPoint* as_rightbottom(SkRect* r) { return ((SkPoint*)(void*)r) + 1; } void SkDraw::drawRect(const SkRect& rect, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } // complex enough to draw as a path if (paint.getPathEffect() || paint.getMaskFilter() || paint.getRasterizer() || !fMatrix->rectStaysRect() || (paint.getStyle() != SkPaint::kFill_Style && SkScalarHalf(paint.getStrokeWidth()) > 0)) { SkPath tmp; tmp.addRect(rect); tmp.setFillType(SkPath::kWinding_FillType); this->drawPath(tmp, paint, NULL, true); return; } const SkMatrix& matrix = *fMatrix; SkRect devRect; // transform rect into devRect { matrix.mapXY(rect.fLeft, rect.fTop, rect_points(devRect, 0)); matrix.mapXY(rect.fRight, rect.fBottom, rect_points(devRect, 1)); devRect.sort(); } if (fBounder && !fBounder->doRect(devRect, paint)) { return; } // look for the quick exit, before we build a blitter { SkIRect ir; devRect.roundOut(&ir); if (fClip->quickReject(ir)) return; } SkAutoBlitterChoose blitterStorage(*fBitmap, matrix, paint); SkBlitter* blitter = blitterStorage.get(); const SkRegion* clip = fClip; if (paint.getStyle() == SkPaint::kFill_Style) { if (paint.isAntiAlias()) { SkScan::AntiFillRect(devRect, clip, blitter); } else { SkScan::FillRect(devRect, clip, blitter); } } else { if (paint.isAntiAlias()) { SkScan::AntiHairRect(devRect, clip, blitter); } else { SkScan::HairRect(devRect, clip, blitter); } } } void SkDraw::drawDevMask(const SkMask& srcM, const SkPaint& paint) const { if (srcM.fBounds.isEmpty()) { return; } SkMask dstM; const SkMask* mask = &srcM; dstM.fImage = NULL; SkAutoMaskImage ami(&dstM, false); if (paint.getMaskFilter() && paint.getMaskFilter()->filterMask(&dstM, srcM, *fMatrix, NULL)) { mask = &dstM; } if (fBounder && !fBounder->doIRect(mask->fBounds)) { return; } SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); blitter->blitMaskRegion(*mask, *fClip); } class SkAutoPaintRestoreColorStrokeWidth { public: SkAutoPaintRestoreColorStrokeWidth(const SkPaint& paint) { fPaint = (SkPaint*)&paint; fColor = paint.getColor(); fWidth = paint.getStrokeWidth(); } ~SkAutoPaintRestoreColorStrokeWidth() { fPaint->setColor(fColor); fPaint->setStrokeWidth(fWidth); } private: SkPaint* fPaint; SkColor fColor; SkScalar fWidth; }; void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } SkPath* pathPtr = (SkPath*)&origSrcPath; bool doFill = true; SkPath tmpPath; SkMatrix tmpMatrix; const SkMatrix* matrix = fMatrix; if (prePathMatrix) { if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style || paint.getRasterizer()) { SkPath* result = pathPtr; if (!pathIsMutable) { result = &tmpPath; pathIsMutable = true; } pathPtr->transform(*prePathMatrix, result); pathPtr = result; } else { if (!tmpMatrix.setConcat(*matrix, *prePathMatrix)) { // overflow return; } matrix = &tmpMatrix; } } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) /* If the device thickness < 1.0, then make it a hairline, and modulate alpha if the thickness is even smaller (e.g. thickness == 0.5 should modulate the alpha by 1/2) */ SkAutoPaintRestoreColorStrokeWidth aprc(paint); if (paint.getStyle() == SkPaint::kStroke_Style && paint.getXfermode() == NULL && (matrix->getType() & SkMatrix::kPerspective_Mask) == 0) { SkScalar width = paint.getStrokeWidth(); if (width > 0) { width = matrix->mapRadius(paint.getStrokeWidth()); if (width < SK_Scalar1) { int scale = (int)SkScalarMul(width, 256); int alpha = paint.getAlpha() * scale >> 8; // pretend to be a hairline, with a modulated alpha ((SkPaint*)&paint)->setAlpha(alpha); ((SkPaint*)&paint)->setStrokeWidth(0); // SkDebugf("------ convert to hairline %d\n", scale); } } } if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) { doFill = paint.getFillPath(*pathPtr, &tmpPath); pathPtr = &tmpPath; } if (paint.getRasterizer()) { SkMask mask; if (paint.getRasterizer()->rasterize(*pathPtr, *matrix, &fClip->getBounds(), paint.getMaskFilter(), &mask, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { this->drawDevMask(mask, paint); SkMask::FreeImage(mask.fImage); } return; } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; // transform the path into device space pathPtr->transform(*matrix, devPathPtr); SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); // how does filterPath() know to fill or hairline the path??? if (paint.getMaskFilter() && paint.getMaskFilter()->filterPath(*devPathPtr, *fMatrix, *fClip, fBounder, blitter.get())) { return; // filterPath() called the blitter, so we're done } if (fBounder && !fBounder->doPath(*devPathPtr, paint, doFill)) { return; } if (doFill) { if (paint.isAntiAlias()) { SkScan::AntiFillPath(*devPathPtr, *fClip, blitter.get()); } else { SkScan::FillPath(*devPathPtr, *fClip, blitter.get()); } } else { // hairline if (paint.isAntiAlias()) { SkScan::AntiHairPath(*devPathPtr, fClip, blitter.get()); } else { SkScan::HairPath(*devPathPtr, fClip, blitter.get()); } } } /** For the purposes of drawing bitmaps, if a matrix is "almost" translate go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_translate(const SkMatrix& matrix, const SkBitmap& bitmap) { SkMatrix::TypeMask mask = matrix.getType(); if (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { return false; } if (mask & SkMatrix::kScale_Mask) { SkScalar sx = matrix[SkMatrix::kMScaleX]; SkScalar sy = matrix[SkMatrix::kMScaleY]; int w = bitmap.width(); int h = bitmap.height(); int sw = SkScalarRound(SkScalarMul(sx, SkIntToScalar(w))); int sh = SkScalarRound(SkScalarMul(sy, SkIntToScalar(h))); return sw == w && sh == h; } // if we got here, we're either kTranslate_Mask or identity return true; } void SkDraw::drawBitmapAsMask(const SkBitmap& bitmap, const SkPaint& paint) const { SkASSERT(bitmap.getConfig() == SkBitmap::kA8_Config); if (just_translate(*fMatrix, bitmap)) { int ix = SkScalarRound(fMatrix->getTranslateX()); int iy = SkScalarRound(fMatrix->getTranslateY()); SkMask mask; mask.fBounds.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = bitmap.rowBytes(); mask.fImage = bitmap.getAddr8(0, 0); this->drawDevMask(mask, paint); } else { // need to xform the bitmap first SkRect r; SkMask mask; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); fMatrix->mapRect(&r); r.round(&mask.fBounds); // set the mask's bounds to the transformed bitmap-bounds, // clipped to the actual device { SkIRect devBounds; devBounds.set(0, 0, fBitmap->width(), fBitmap->height()); // need intersect(l, t, r, b) on irect if (!mask.fBounds.intersect(devBounds)) { return; } } mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkAlign4(mask.fBounds.width()); size_t size = mask.computeImageSize(); if (0 == size) { // the mask is too big to allocated, draw nothing return; } // allocate (and clear) our temp buffer to hold the transformed bitmap SkAutoMalloc storage(size); mask.fImage = (uint8_t*)storage.get(); memset(mask.fImage, 0, size); // now draw our bitmap(src) into mask(dst), transformed by the matrix { SkBitmap device; device.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); device.setPixels(mask.fImage); SkCanvas c(device); // need the unclipped top/left for the translate c.translate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); c.concat(*fMatrix); // We can't call drawBitmap, or we'll infinitely recurse. Instead // we manually build a shader and draw that into our new mask SkPaint tmpPaint; tmpPaint.setFlags(paint.getFlags()); SkAutoBitmapShaderInstall install(bitmap, &tmpPaint); SkRect rr; rr.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); c.drawRect(rr, tmpPaint); } this->drawDevMask(mask, paint); } } static bool clipped_out(const SkMatrix& m, const SkRegion& c, const SkRect& srcR) { SkRect dstR; SkIRect devIR; m.mapRect(&dstR, srcR); dstR.roundOut(&devIR); return c.quickReject(devIR); } static bool clipped_out(const SkMatrix& matrix, const SkRegion& clip, int width, int height) { SkRect r; r.set(0, 0, SkIntToScalar(width), SkIntToScalar(height)); return clipped_out(matrix, clip, r); } void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fClip->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.getConfig() == SkBitmap::kNo_Config || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } // run away on too-big bitmaps for now (exceed 16.16) if (bitmap.width() > 32767 || bitmap.height() > 32767) { return; } SkAutoPaintStyleRestore restore(paint, SkPaint::kFill_Style); SkMatrix matrix; if (!matrix.setConcat(*fMatrix, prematrix)) { return; } // do I need to call the bounder first??? if (clipped_out(matrix, *fClip, bitmap.width(), bitmap.height())) { return; } // only lock the pixels if we passed the clip test SkAutoLockPixels alp(bitmap); // after the lock, check if we are valid if (!bitmap.readyToDraw()) { return; } if (bitmap.getConfig() != SkBitmap::kA8_Config && just_translate(matrix, bitmap)) { int ix = SkScalarRound(matrix.getTranslateX()); int iy = SkScalarRound(matrix.getTranslateY()); uint32_t storage[kBlitterStorageLongCount]; SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, ix, iy, storage, sizeof(storage)); if (blitter) { SkAutoTPlacementDelete ad(blitter, storage); SkIRect ir; ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); if (fBounder && !fBounder->doIRect(ir)) { return; } SkRegion::Cliperator iter(*fClip, ir); const SkIRect& cr = iter.rect(); for (; !iter.done(); iter.next()) { SkASSERT(!cr.isEmpty()); blitter->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); } return; } #if 0 SkDebugf("---- MISSING sprite case: config=%d [%d %d], device=%d, xfer=%p, alpha=0x%X colorFilter=%p\n", bitmap.config(), bitmap.width(), bitmap.height(), fBitmap->config(), paint.getXfermode(), paint.getAlpha(), paint.getColorFilter()); #endif } // now make a temp draw on the stack, and use it // SkDraw draw(*this); draw.fMatrix = &matrix; if (bitmap.getConfig() == SkBitmap::kA8_Config) { draw.drawBitmapAsMask(bitmap, paint); } else { SkAutoBitmapShaderInstall install(bitmap, &paint); SkRect r; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); // is this ok if paint has a rasterizer? draw.drawRect(r, paint); } } void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fClip->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.getConfig() == SkBitmap::kNo_Config || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } SkIRect bounds; bounds.set(x, y, x + bitmap.width(), y + bitmap.height()); if (fClip->quickReject(bounds)) { return; // nothing to draw } SkAutoPaintStyleRestore restore(paint, SkPaint::kFill_Style); if (NULL == paint.getColorFilter()) { uint32_t storage[kBlitterStorageLongCount]; SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, x, y, storage, sizeof(storage)); if (blitter) { SkAutoTPlacementDelete ad(blitter, storage); if (fBounder && !fBounder->doIRect(bounds)) { return; } SkRegion::Cliperator iter(*fClip, bounds); const SkIRect& cr = iter.rect(); for (; !iter.done(); iter.next()) { SkASSERT(!cr.isEmpty()); blitter->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); } return; } } SkAutoBitmapShaderInstall install(bitmap, &paint); SkMatrix matrix; SkRect r; // get a scalar version of our rect r.set(bounds); // tell the shader our offset matrix.setTranslate(r.fLeft, r.fTop); paint.getShader()->setLocalMatrix(matrix); SkDraw draw(*this); matrix.reset(); draw.fMatrix = &matrix; // call ourself with a rect // is this OK if paint has a rasterizer? draw.drawRect(r, paint); } /////////////////////////////////////////////////////////////////////////////// #include "SkScalerContext.h" #include "SkGlyphCache.h" #include "SkUtils.h" static void measure_text(SkGlyphCache* cache, SkDrawCacheProc glyphCacheProc, const char text[], size_t byteLength, SkVector* stopVector) { SkFixed x = 0, y = 0; const char* stop = text + byteLength; SkAutoKern autokern; while (text < stop) { // don't need x, y here, since all subpixel variants will have the // same advance const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); x += autokern.adjust(glyph) + glyph.fAdvanceX; y += glyph.fAdvanceY; } stopVector->set(SkFixedToScalar(x), SkFixedToScalar(y)); SkASSERT(text == stop); } void SkDraw::drawText_asPaths(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) SkTextToPathIter iter(text, byteLength, paint, true, true); SkMatrix matrix; matrix.setScale(iter.getPathScale(), iter.getPathScale()); matrix.postTranslate(x, y); const SkPath* iterPath; SkScalar xpos, prevXPos = 0; while ((iterPath = iter.next(&xpos)) != NULL) { matrix.postTranslate(xpos - prevXPos, 0); this->drawPath(*iterPath, iter.getPaint(), &matrix, false); prevXPos = xpos; } } #define kStdStrikeThru_Offset (-SK_Scalar1 * 6 / 21) #define kStdUnderline_Offset (SK_Scalar1 / 9) #define kStdUnderline_Thickness (SK_Scalar1 / 18) static void draw_paint_rect(const SkDraw* draw, const SkPaint& paint, const SkRect& r, SkScalar textSize) { if (paint.getStyle() == SkPaint::kFill_Style) { draw->drawRect(r, paint); } else { SkPaint p(paint); p.setStrokeWidth(SkScalarMul(textSize, paint.getStrokeWidth())); draw->drawRect(r, p); } } static void handle_aftertext(const SkDraw* draw, const SkPaint& paint, SkScalar width, const SkPoint& start) { uint32_t flags = paint.getFlags(); if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { SkScalar textSize = paint.getTextSize(); SkScalar height = SkScalarMul(textSize, kStdUnderline_Thickness); SkRect r; r.fLeft = start.fX; r.fRight = start.fX + width; if (flags & SkPaint::kUnderlineText_Flag) { SkScalar offset = SkScalarMulAdd(textSize, kStdUnderline_Offset, start.fY); r.fTop = offset; r.fBottom = offset + height; draw_paint_rect(draw, paint, r, textSize); } if (flags & SkPaint::kStrikeThruText_Flag) { SkScalar offset = SkScalarMulAdd(textSize, kStdStrikeThru_Offset, start.fY); r.fTop = offset; r.fBottom = offset + height; draw_paint_rect(draw, paint, r, textSize); } } } // disable warning : local variable used without having been initialized #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif ////////////////////////////////////////////////////////////////////////////// static void D1G_NoBounder_RectClip(const SkDraw1Glyph& state, const SkGlyph& glyph, int left, int top) { SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT(state.fClip->isRect()); SkASSERT(NULL == state.fBounder); SkASSERT(state.fClipBounds == state.fClip->getBounds()); left += glyph.fLeft; top += glyph.fTop; int right = left + glyph.fWidth; int bottom = top + glyph.fHeight; SkMask mask; SkIRect storage; SkIRect* bounds = &mask.fBounds; mask.fBounds.set(left, top, right, bottom); // this extra test is worth it, assuming that most of the time it succeeds // since we can avoid writing to storage if (!state.fClipBounds.containsNoEmptyCheck(left, top, right, bottom)) { if (!storage.intersectNoEmptyCheck(mask.fBounds, state.fClipBounds)) return; bounds = &storage; } uint8_t* aa = (uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; // can't rasterize glyph } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = aa; state.fBlitter->blitMask(mask, *bounds); } static void D1G_NoBounder_RgnClip(const SkDraw1Glyph& state, const SkGlyph& glyph, int left, int top) { SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT(!state.fClip->isRect()); SkASSERT(NULL == state.fBounder); SkMask mask; left += glyph.fLeft; top += glyph.fTop; mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); if (!clipper.done()) { const SkIRect& cr = clipper.rect(); const uint8_t* aa = (const uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = (uint8_t*)aa; do { state.fBlitter->blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } static void D1G_Bounder(const SkDraw1Glyph& state, const SkGlyph& glyph, int left, int top) { SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkMask mask; left += glyph.fLeft; top += glyph.fTop; mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); if (!clipper.done()) { const SkIRect& cr = clipper.rect(); const uint8_t* aa = (const uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; } } if (state.fBounder->doIRect(cr)) { mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = (uint8_t*)aa; do { state.fBlitter->blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } } SkDraw1Glyph::Proc SkDraw1Glyph::init(const SkDraw* draw, SkBlitter* blitter, SkGlyphCache* cache) { fDraw = draw; fBounder = draw->fBounder; fClip = draw->fClip; fClipBounds = fClip->getBounds(); fBlitter = blitter; fCache = cache; if (draw->fProcs && draw->fProcs->fD1GProc) { return draw->fProcs->fD1GProc; } if (NULL == fBounder) { if (fClip->isRect()) { return D1G_NoBounder_RectClip; } else { return D1G_NoBounder_RgnClip; } } else { return D1G_Bounder; } } enum RoundBaseline { kDont_Round_Baseline, kRound_X_Baseline, kRound_Y_Baseline }; static RoundBaseline computeRoundBaseline(const SkMatrix& mat) { if (mat[1] == 0 && mat[3] == 0) { // we're 0 or 180 degrees, round the y coordinate of the baseline return kRound_Y_Baseline; } else if (mat[0] == 0 && mat[4] == 0) { // we're 90 or 270 degrees, round the x coordinate of the baseline return kRound_X_Baseline; } else { return kDont_Round_Baseline; } } /////////////////////////////////////////////////////////////////////////////// void SkDraw::drawText(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } SkScalar underlineWidth = 0; SkPoint underlineStart; underlineStart.set(0, 0); // to avoid warning if (paint.getFlags() & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { underlineWidth = paint.measureText(text, byteLength); SkScalar offsetX = 0; if (paint.getTextAlign() == SkPaint::kCenter_Align) { offsetX = SkScalarHalf(underlineWidth); } else if (paint.getTextAlign() == SkPaint::kRight_Align) { offsetX = underlineWidth; } underlineStart.set(x - offsetX, y); } if (/*paint.isLinearText() ||*/ (fMatrix->getType() & SkMatrix::kPerspective_Mask)) { this->drawText_asPaths(text, byteLength, x, y, paint); handle_aftertext(this, paint, underlineWidth, underlineStart); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, fMatrix); SkGlyphCache* cache = autoCache.getCache(); SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); // transform our starting point { SkPoint loc; fMatrix->mapXY(x, y, &loc); x = loc.fX; y = loc.fY; } // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkVector stop; measure_text(cache, glyphCacheProc, text, byteLength, &stop); SkScalar stopX = stop.fX; SkScalar stopY = stop.fY; if (paint.getTextAlign() == SkPaint::kCenter_Align) { stopX = SkScalarHalf(stopX); stopY = SkScalarHalf(stopY); } x -= stopX; y -= stopY; } SkFixed fx = SkScalarToFixed(x); SkFixed fy = SkScalarToFixed(y); const char* stop = text + byteLength; if (paint.isSubpixelText()) { RoundBaseline roundBaseline = computeRoundBaseline(*fMatrix); if (kRound_Y_Baseline == roundBaseline) { fy = (fy + 0x8000) & ~0xFFFF; } else if (kRound_X_Baseline == roundBaseline) { fx = (fx + 0x8000) & ~0xFFFF; } } else { // apply the bias here, so we don't have to add 1/2 in the loop fx += SK_Fixed1/2; fy += SK_Fixed1/2; } SkAutoKern autokern; SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter.get(), cache); while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache, &text, fx, fy); fx += autokern.adjust(glyph); if (glyph.fWidth) { proc(d1g, glyph, SkFixedFloor(fx), SkFixedFloor(fy)); } fx += glyph.fAdvanceX; fy += glyph.fAdvanceY; } if (underlineWidth) { autoCache.release(); // release this now to free up the RAM handle_aftertext(this, paint, underlineWidth, underlineStart); } } // last parameter is interpreted as SkFixed [x, y] // return the fixed position, which may be rounded or not by the caller // e.g. subpixel doesn't round typedef void (*AlignProc)(const SkPoint&, const SkGlyph&, SkIPoint*); static void leftAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX), SkScalarToFixed(loc.fY)); } static void centerAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX) - (glyph.fAdvanceX >> 1), SkScalarToFixed(loc.fY) - (glyph.fAdvanceY >> 1)); } static void rightAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX) - glyph.fAdvanceX, SkScalarToFixed(loc.fY) - glyph.fAdvanceY); } static AlignProc pick_align_proc(SkPaint::Align align) { static const AlignProc gProcs[] = { leftAlignProc, centerAlignProc, rightAlignProc }; SkASSERT((unsigned)align < SK_ARRAY_COUNT(gProcs)); return gProcs[align]; } class TextMapState { public: mutable SkPoint fLoc; TextMapState(const SkMatrix& matrix, SkScalar y) : fMatrix(matrix), fProc(matrix.getMapXYProc()), fY(y) {} typedef void (*Proc)(const TextMapState&, const SkScalar pos[]); Proc pickProc(int scalarsPerPosition); private: const SkMatrix& fMatrix; SkMatrix::MapXYProc fProc; SkScalar fY; // ignored by MapXYProc // these are only used by Only... procs SkScalar fScaleX, fTransX, fTransformedY; static void MapXProc(const TextMapState& state, const SkScalar pos[]) { state.fProc(state.fMatrix, *pos, state.fY, &state.fLoc); } static void MapXYProc(const TextMapState& state, const SkScalar pos[]) { state.fProc(state.fMatrix, pos[0], pos[1], &state.fLoc); } static void MapOnlyScaleXProc(const TextMapState& state, const SkScalar pos[]) { state.fLoc.set(SkScalarMul(state.fScaleX, *pos) + state.fTransX, state.fTransformedY); } static void MapOnlyTransXProc(const TextMapState& state, const SkScalar pos[]) { state.fLoc.set(*pos + state.fTransX, state.fTransformedY); } }; TextMapState::Proc TextMapState::pickProc(int scalarsPerPosition) { SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); if (1 == scalarsPerPosition) { unsigned mtype = fMatrix.getType(); if (mtype & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { return MapXProc; } else { fScaleX = fMatrix.getScaleX(); fTransX = fMatrix.getTranslateX(); fTransformedY = SkScalarMul(fY, fMatrix.getScaleY()) + fMatrix.getTranslateY(); return (mtype & SkMatrix::kScale_Mask) ? MapOnlyScaleXProc : MapOnlyTransXProc; } } else { return MapXYProc; } } ////////////////////////////////////////////////////////////////////////////// void SkDraw::drawPosText(const char text[], size_t byteLength, const SkScalar pos[], SkScalar constY, int scalarsPerPosition, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } if (/*paint.isLinearText() ||*/ (fMatrix->getType() & SkMatrix::kPerspective_Mask)) { // TODO !!!! // this->drawText_asPaths(text, byteLength, x, y, paint); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, fMatrix); SkGlyphCache* cache = autoCache.getCache(); SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); const char* stop = text + byteLength; AlignProc alignProc = pick_align_proc(paint.getTextAlign()); SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter.get(), cache); TextMapState tms(*fMatrix, constY); TextMapState::Proc tmsProc = tms.pickProc(scalarsPerPosition); if (paint.isSubpixelText()) { // maybe we should skip the rounding if linearText is set RoundBaseline roundBaseline = computeRoundBaseline(*fMatrix); if (SkPaint::kLeft_Align == paint.getTextAlign()) { while (text < stop) { tmsProc(tms, pos); SkFixed fx = SkScalarToFixed(tms.fLoc.fX); SkFixed fy = SkScalarToFixed(tms.fLoc.fY); if (kRound_Y_Baseline == roundBaseline) { fy = (fy + 0x8000) & ~0xFFFF; } else if (kRound_X_Baseline == roundBaseline) { fx = (fx + 0x8000) & ~0xFFFF; } const SkGlyph& glyph = glyphCacheProc(cache, &text, fx, fy); if (glyph.fWidth) { proc(d1g, glyph, SkFixedFloor(fx), SkFixedFloor(fy)); } pos += scalarsPerPosition; } } else { while (text < stop) { const SkGlyph* glyph = &glyphCacheProc(cache, &text, 0, 0); if (glyph->fWidth) { SkDEBUGCODE(SkFixed prevAdvX = glyph->fAdvanceX;) SkDEBUGCODE(SkFixed prevAdvY = glyph->fAdvanceY;) SkFixed fx, fy; tmsProc(tms, pos); { SkIPoint fixedLoc; alignProc(tms.fLoc, *glyph, &fixedLoc); fx = fixedLoc.fX; fy = fixedLoc.fY; if (kRound_Y_Baseline == roundBaseline) { fy = (fy + 0x8000) & ~0xFFFF; } else if (kRound_X_Baseline == roundBaseline) { fx = (fx + 0x8000) & ~0xFFFF; } } // have to call again, now that we've been "aligned" glyph = &glyphCacheProc(cache, &text, fx, fy); // the assumption is that the advance hasn't changed SkASSERT(prevAdvX == glyph->fAdvanceX); SkASSERT(prevAdvY == glyph->fAdvanceY); proc(d1g, *glyph, SkFixedFloor(fx), SkFixedFloor(fy)); } pos += scalarsPerPosition; } } } else { // not subpixel while (text < stop) { // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { tmsProc(tms, pos); SkIPoint fixedLoc; alignProc(tms.fLoc, glyph, &fixedLoc); proc(d1g, glyph, SkFixedRound(fixedLoc.fX), SkFixedRound(fixedLoc.fY)); } pos += scalarsPerPosition; } } } #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////////////// #include "SkPathMeasure.h" static void morphpoints(SkPoint dst[], const SkPoint src[], int count, SkPathMeasure& meas, const SkMatrix& matrix) { SkMatrix::MapXYProc proc = matrix.getMapXYProc(); for (int i = 0; i < count; i++) { SkPoint pos; SkVector tangent; proc(matrix, src[i].fX, src[i].fY, &pos); SkScalar sx = pos.fX; SkScalar sy = pos.fY; meas.getPosTan(sx, &pos, &tangent); /* This is the old way (that explains our approach but is way too slow SkMatrix matrix; SkPoint pt; pt.set(sx, sy); matrix.setSinCos(tangent.fY, tangent.fX); matrix.preTranslate(-sx, 0); matrix.postTranslate(pos.fX, pos.fY); matrix.mapPoints(&dst[i], &pt, 1); */ dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy), pos.fY + SkScalarMul(tangent.fX, sy)); } } /* TODO Need differentially more subdivisions when the follow-path is curvy. Not sure how to determine that, but we need it. I guess a cheap answer is let the caller tell us, but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out. */ static void morphpath(SkPath* dst, const SkPath& src, SkPathMeasure& meas, const SkMatrix& matrix) { SkPath::Iter iter(src, false); SkPoint srcP[4], dstP[3]; SkPath::Verb verb; while ((verb = iter.next(srcP)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: morphpoints(dstP, srcP, 1, meas, matrix); dst->moveTo(dstP[0]); break; case SkPath::kLine_Verb: // turn lines into quads to look bendy srcP[0].fX = SkScalarAve(srcP[0].fX, srcP[1].fX); srcP[0].fY = SkScalarAve(srcP[0].fY, srcP[1].fY); morphpoints(dstP, srcP, 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kQuad_Verb: morphpoints(dstP, &srcP[1], 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kCubic_Verb: morphpoints(dstP, &srcP[1], 3, meas, matrix); dst->cubicTo(dstP[0], dstP[1], dstP[2]); break; case SkPath::kClose_Verb: dst->close(); break; default: SkASSERT(!"unknown verb"); break; } } } void SkDraw::drawTextOnPath(const char text[], size_t byteLength, const SkPath& follow, const SkMatrix* matrix, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); // nothing to draw if (text == NULL || byteLength == 0 || fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } SkTextToPathIter iter(text, byteLength, paint, true, true); SkPathMeasure meas(follow, false); SkScalar hOffset = 0; // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkScalar pathLen = meas.getLength(); if (paint.getTextAlign() == SkPaint::kCenter_Align) { pathLen = SkScalarHalf(pathLen); } hOffset += pathLen; } const SkPath* iterPath; SkScalar xpos; SkMatrix scaledMatrix; SkScalar scale = iter.getPathScale(); scaledMatrix.setScale(scale, scale); while ((iterPath = iter.next(&xpos)) != NULL) { SkPath tmp; SkMatrix m(scaledMatrix); m.postTranslate(xpos + hOffset, 0); if (matrix) { m.postConcat(*matrix); } morphpath(&tmp, *iterPath, meas, m); this->drawPath(tmp, iter.getPaint()); } } /////////////////////////////////////////////////////////////////////////////// struct VertState { int f0, f1, f2; VertState(int vCount, const uint16_t indices[], int indexCount) : fIndices(indices) { fCurrIndex = 0; if (indices) { fCount = indexCount; } else { fCount = vCount; } } typedef bool (*Proc)(VertState*); Proc chooseProc(SkCanvas::VertexMode mode); private: int fCount; int fCurrIndex; const uint16_t* fIndices; static bool Triangles(VertState*); static bool TrianglesX(VertState*); static bool TriangleStrip(VertState*); static bool TriangleStripX(VertState*); static bool TriangleFan(VertState*); static bool TriangleFanX(VertState*); }; bool VertState::Triangles(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = index + 0; state->f1 = index + 1; state->f2 = index + 2; state->fCurrIndex = index + 3; return true; } bool VertState::TrianglesX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = indices[index + 0]; state->f1 = indices[index + 1]; state->f2 = indices[index + 2]; state->fCurrIndex = index + 3; return true; } bool VertState::TriangleStrip(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f2 = index + 2; if (index & 1) { state->f0 = index + 1; state->f1 = index + 0; } else { state->f0 = index + 0; state->f1 = index + 1; } state->fCurrIndex = index + 1; return true; } bool VertState::TriangleStripX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f2 = indices[index + 2]; if (index & 1) { state->f0 = indices[index + 1]; state->f1 = indices[index + 0]; } else { state->f0 = indices[index + 0]; state->f1 = indices[index + 1]; } state->fCurrIndex = index + 1; return true; } bool VertState::TriangleFan(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = 0; state->f1 = index + 1; state->f2 = index + 2; state->fCurrIndex = index + 1; return true; } bool VertState::TriangleFanX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = indices[0]; state->f1 = indices[index + 1]; state->f2 = indices[index + 2]; state->fCurrIndex = index + 1; return true; } VertState::Proc VertState::chooseProc(SkCanvas::VertexMode mode) { switch (mode) { case SkCanvas::kTriangles_VertexMode: return fIndices ? TrianglesX : Triangles; case SkCanvas::kTriangleStrip_VertexMode: return fIndices ? TriangleStripX : TriangleStrip; case SkCanvas::kTriangleFan_VertexMode: return fIndices ? TriangleFanX : TriangleFan; default: return NULL; } } typedef void (*HairProc)(const SkPoint&, const SkPoint&, const SkRegion*, SkBlitter*); static HairProc ChooseHairProc(bool doAntiAlias) { return doAntiAlias ? SkScan::AntiHairLine : SkScan::HairLine; } static bool texture_to_matrix(const VertState& state, const SkPoint verts[], const SkPoint texs[], SkMatrix* matrix) { SkPoint src[3], dst[3]; src[0] = texs[state.f0]; src[1] = texs[state.f1]; src[2] = texs[state.f2]; dst[0] = verts[state.f0]; dst[1] = verts[state.f1]; dst[2] = verts[state.f2]; return matrix->setPolyToPoly(src, dst, 3); } class SkTriColorShader : public SkShader { public: SkTriColorShader() {} bool setup(const SkPoint pts[], const SkColor colors[], int, int, int); virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count); protected: SkTriColorShader(SkFlattenableReadBuffer& buffer) : SkShader(buffer) {} virtual Factory getFactory() { return CreateProc; } private: SkMatrix fDstToUnit; SkPMColor fColors[3]; static SkFlattenable* CreateProc(SkFlattenableReadBuffer& buffer) { return SkNEW_ARGS(SkTriColorShader, (buffer)); } typedef SkShader INHERITED; }; bool SkTriColorShader::setup(const SkPoint pts[], const SkColor colors[], int index0, int index1, int index2) { fColors[0] = SkPreMultiplyColor(colors[index0]); fColors[1] = SkPreMultiplyColor(colors[index1]); fColors[2] = SkPreMultiplyColor(colors[index2]); SkMatrix m, im; m.reset(); m.set(0, pts[index1].fX - pts[index0].fX); m.set(1, pts[index2].fX - pts[index0].fX); m.set(2, pts[index0].fX); m.set(3, pts[index1].fY - pts[index0].fY); m.set(4, pts[index2].fY - pts[index0].fY); m.set(5, pts[index0].fY); if (!m.invert(&im)) { return false; } return fDstToUnit.setConcat(im, this->getTotalInverse()); } #include "SkColorPriv.h" #include "SkComposeShader.h" static int ScalarTo256(SkScalar v) { int scale = SkScalarToFixed(v) >> 8; if (scale < 0) { scale = 0; } if (scale > 255) { scale = 255; } return SkAlpha255To256(scale); } void SkTriColorShader::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkPoint src; for (int i = 0; i < count; i++) { fDstToUnit.mapXY(SkIntToScalar(x), SkIntToScalar(y), &src); x += 1; int scale1 = ScalarTo256(src.fX); int scale2 = ScalarTo256(src.fY); int scale0 = 256 - scale1 - scale2; if (scale0 < 0) { if (scale1 > scale2) { scale2 = 256 - scale1; } else { scale1 = 256 - scale2; } scale0 = 0; } dstC[i] = SkAlphaMulQ(fColors[0], scale0) + SkAlphaMulQ(fColors[1], scale1) + SkAlphaMulQ(fColors[2], scale2); } } void SkDraw::drawVertices(SkCanvas::VertexMode vmode, int count, const SkPoint vertices[], const SkPoint textures[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) const { SkASSERT(0 == count || NULL != vertices); // abort early if there is nothing to draw if (count < 3 || (indices && indexCount < 3) || fClip->isEmpty() || (paint.getAlpha() == 0 && paint.getXfermode() == NULL)) { return; } // transform out vertices into device coordinates SkAutoSTMalloc<16, SkPoint> storage(count); SkPoint* devVerts = storage.get(); fMatrix->mapPoints(devVerts, vertices, count); if (fBounder) { SkRect bounds; bounds.set(devVerts, count); if (!fBounder->doRect(bounds, paint)) { return; } } /* We can draw the vertices in 1 of 4 ways: - solid color (no shader/texture[], no colors[]) - just colors (no shader/texture[], has colors[]) - just texture (has shader/texture[], no colors[]) - colors * texture (has shader/texture[], has colors[]) Thus for texture drawing, we need both texture[] and a shader. */ SkTriColorShader triShader; // must be above declaration of p SkPaint p(paint); SkShader* shader = p.getShader(); if (NULL == shader) { // if we have no shader, we ignore the texture coordinates textures = NULL; } else if (NULL == textures) { // if we don't have texture coordinates, ignore the shader p.setShader(NULL); shader = NULL; } // setup the custom shader (if needed) if (NULL != colors) { if (NULL == textures) { // just colors (no texture) p.setShader(&triShader); } else { // colors * texture SkASSERT(shader); bool releaseMode = false; if (NULL == xmode) { xmode = SkXfermode::Create(SkXfermode::kMultiply_Mode); releaseMode = true; } SkShader* compose = SkNEW_ARGS(SkComposeShader, (&triShader, shader, xmode)); p.setShader(compose)->unref(); if (releaseMode) { xmode->unref(); } } } SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, p); // setup our state and function pointer for iterating triangles VertState state(count, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); if (NULL != textures || NULL != colors) { SkMatrix localM, tempM; bool hasLocalM = shader && shader->getLocalMatrix(&localM); if (NULL != colors) { if (!triShader.setContext(*fBitmap, p, *fMatrix)) { colors = NULL; } } while (vertProc(&state)) { if (NULL != textures) { if (texture_to_matrix(state, vertices, textures, &tempM)) { if (hasLocalM) { tempM.postConcat(localM); } shader->setLocalMatrix(tempM); // need to recal setContext since we changed the local matrix if (!shader->setContext(*fBitmap, p, *fMatrix)) { continue; } } } if (NULL != colors) { if (!triShader.setup(vertices, colors, state.f0, state.f1, state.f2)) { continue; } } SkScan::FillTriangle(devVerts[state.f0], devVerts[state.f1], devVerts[state.f2], fClip, blitter.get()); } // now restore the shader's original local matrix if (NULL != shader) { if (hasLocalM) { shader->setLocalMatrix(localM); } else { shader->resetLocalMatrix(); } } } else { // no colors[] and no texture HairProc hairProc = ChooseHairProc(paint.isAntiAlias()); while (vertProc(&state)) { hairProc(devVerts[state.f0], devVerts[state.f1], fClip, blitter.get()); hairProc(devVerts[state.f1], devVerts[state.f2], fClip, blitter.get()); hairProc(devVerts[state.f2], devVerts[state.f0], fClip, blitter.get()); } } } //////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkDraw::validate() const { SkASSERT(fBitmap != NULL); SkASSERT(fMatrix != NULL); SkASSERT(fClip != NULL); const SkIRect& cr = fClip->getBounds(); SkIRect br; br.set(0, 0, fBitmap->width(), fBitmap->height()); SkASSERT(cr.isEmpty() || br.contains(cr)); } #endif ////////////////////////////////////////////////////////////////////////////////////////// bool SkBounder::doIRect(const SkIRect& r) { SkIRect rr; return rr.intersect(fClip->getBounds(), r) && this->onIRect(rr); } bool SkBounder::doHairline(const SkPoint& pt0, const SkPoint& pt1, const SkPaint& paint) { SkIRect r; SkScalar v0, v1; v0 = pt0.fX; v1 = pt1.fX; if (v0 > v1) { SkTSwap(v0, v1); } r.fLeft = SkScalarFloor(v0); r.fRight = SkScalarCeil(v1); v0 = pt0.fY; v1 = pt1.fY; if (v0 > v1) { SkTSwap(v0, v1); } r.fTop = SkScalarFloor(v0); r.fBottom = SkScalarCeil(v1); if (paint.isAntiAlias()) { r.inset(-1, -1); } return this->doIRect(r); } bool SkBounder::doRect(const SkRect& rect, const SkPaint& paint) { SkIRect r; if (paint.getStyle() == SkPaint::kFill_Style) { rect.round(&r); } else { int rad = -1; rect.roundOut(&r); if (paint.isAntiAlias()) { rad = -2; } r.inset(rad, rad); } return this->doIRect(r); } bool SkBounder::doPath(const SkPath& path, const SkPaint& paint, bool doFill) { SkIRect r; const SkRect& bounds = path.getBounds(); if (doFill) { bounds.round(&r); } else { // hairline bounds.roundOut(&r); } if (paint.isAntiAlias()) { r.inset(-1, -1); } return this->doIRect(r); } void SkBounder::commit() { // override in subclass } //////////////////////////////////////////////////////////////////////////////////////////////// #include "SkPath.h" #include "SkDraw.h" #include "SkRegion.h" #include "SkBlitter.h" static bool compute_bounds(const SkPath& devPath, const SkIRect* clipBounds, SkMaskFilter* filter, const SkMatrix* filterMatrix, SkIRect* bounds) { if (devPath.isEmpty()) { return false; } SkIPoint margin; margin.set(0, 0); // init our bounds from the path { SkRect pathBounds = devPath.getBounds(); pathBounds.inset(-SK_ScalarHalf, -SK_ScalarHalf); pathBounds.roundOut(bounds); } if (filter) { SkASSERT(filterMatrix); SkMask srcM, dstM; srcM.fBounds = *bounds; srcM.fFormat = SkMask::kA8_Format; srcM.fImage = NULL; if (!filter->filterMask(&dstM, srcM, *filterMatrix, &margin)) { return false; } *bounds = dstM.fBounds; } if (clipBounds && !SkIRect::Intersects(*clipBounds, *bounds)) { return false; } // (possibly) trim the srcM bounds to reflect the clip // (plus whatever slop the filter needs) if (clipBounds && !clipBounds->contains(*bounds)) { SkIRect tmp = *bounds; (void)tmp.intersect(*clipBounds); // Ugh. Guard against gigantic margins from wacky filters. Without this // check we can request arbitrary amounts of slop beyond our visible // clip, and bring down the renderer (at least on finite RAM machines // like handsets, etc.). Need to balance this invented value between // quality of large filters like blurs, and the corresponding memory // requests. static const int MAX_MARGIN = 128; tmp.inset(-SkMin32(margin.fX, MAX_MARGIN), -SkMin32(margin.fY, MAX_MARGIN)); (void)bounds->intersect(tmp); } return true; } static void draw_into_mask(const SkMask& mask, const SkPath& devPath) { SkBitmap bm; SkDraw draw; SkRegion clipRgn; SkMatrix matrix; SkPaint paint; bm.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); bm.setPixels(mask.fImage); clipRgn.setRect(0, 0, mask.fBounds.width(), mask.fBounds.height()); matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); draw.fBitmap = &bm; draw.fClip = &clipRgn; draw.fMatrix = &matrix; draw.fBounder = NULL; paint.setAntiAlias(true); draw.drawPath(devPath, paint); } bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect* clipBounds, SkMaskFilter* filter, const SkMatrix* filterMatrix, SkMask* mask, SkMask::CreateMode mode) { if (SkMask::kJustRenderImage_CreateMode != mode) { if (!compute_bounds(devPath, clipBounds, filter, filterMatrix, &mask->fBounds)) return false; } if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) { mask->fFormat = SkMask::kA8_Format; mask->fRowBytes = mask->fBounds.width(); size_t size = mask->computeImageSize(); if (0 == size) { // we're too big to allocate the mask, abort return false; } mask->fImage = SkMask::AllocImage(size); memset(mask->fImage, 0, mask->computeImageSize()); } if (SkMask::kJustComputeBounds_CreateMode != mode) { draw_into_mask(*mask, devPath); } return true; }