aboutsummaryrefslogtreecommitdiffstats
path: root/fs/proc
diff options
context:
space:
mode:
authorEric W. Biederman <ebiederm@xmission.com>2006-06-26 00:25:58 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-26 09:58:26 -0700
commit778c1144771f0064b6f51bee865cceb0d996f2f9 (patch)
tree1204e6d84cc5e7e75374544102839e85cfb9eba0 /fs/proc
parent5b0c1dd38b66e2dd0cf655aa845e341b50b93ddd (diff)
downloadkernel_samsung_smdk4412-778c1144771f0064b6f51bee865cceb0d996f2f9.zip
kernel_samsung_smdk4412-778c1144771f0064b6f51bee865cceb0d996f2f9.tar.gz
kernel_samsung_smdk4412-778c1144771f0064b6f51bee865cceb0d996f2f9.tar.bz2
[PATCH] proc: Use sane permission checks on the /proc/<pid>/fd/ symlinks
Since 2.2 we have been doing a chroot check to see if it is appropriate to return a read or follow one of these magic symlinks. The chroot check was asking a question about the visibility of files to the calling process and it was actually checking the destination process, and not the files themselves. That test was clearly bogus. In my first pass through I simply fixed the test to check the visibility of the files themselves. That naive approach to fixing the permissions was too strict and resulted in cases where a task could not even see all of it's file descriptors. What has disturbed me about relaxing this check is that file descriptors are per-process private things, and they are occasionaly used a user space capability tokens. Looking a little farther into the symlink path on /proc I did find userid checks and a check for capability (CAP_DAC_OVERRIDE) so there were permissions checking this. But I was still concerned about privacy. Besides /proc there is only one other way to find out this kind of information, and that is ptrace. ptrace has been around for a long time and it has a well established security model. So after thinking about it I finally realized that the permission checks that make sense are the permission checks applied to ptrace_attach. The checks are simple per process, and won't cause nasty surprises for people coming from less capable unices. Unfortunately there is one case that the current ptrace_attach test does not cover: Zombies and kernel threads. Single stepping those kinds of processes is impossible. Being able to see which file descriptors are open on these tasks is important to lsof, fuser and friends. So for these special processes I made the rule you can't find out unless you have CAP_SYS_PTRACE. These proc permission checks should now conform to the principle of least surprise. As well as using much less code to implement :) Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'fs/proc')
-rw-r--r--fs/proc/base.c124
1 files changed, 29 insertions, 95 deletions
diff --git a/fs/proc/base.c b/fs/proc/base.c
index f0db7f6..f38da6b 100644
--- a/fs/proc/base.c
+++ b/fs/proc/base.c
@@ -532,42 +532,34 @@ static int proc_oom_score(struct task_struct *task, char *buffer)
/************************************************************************/
/* permission checks */
-
-/* If the process being read is separated by chroot from the reading process,
- * don't let the reader access the threads.
- */
-static int proc_check_chroot(struct dentry *de, struct vfsmount *mnt)
+static int proc_fd_access_allowed(struct inode *inode)
{
- struct dentry *base;
- struct vfsmount *our_vfsmnt;
- int res = 0;
-
- read_lock(&current->fs->lock);
- our_vfsmnt = mntget(current->fs->rootmnt);
- base = dget(current->fs->root);
- read_unlock(&current->fs->lock);
-
- spin_lock(&vfsmount_lock);
+ struct task_struct *task;
+ int allowed = 0;
+ /* Allow access to a task's file descriptors if either we may
+ * use ptrace attach to the process and find out that
+ * information, or if the task cannot possibly be ptraced
+ * allow access if we have the proper capability.
+ */
+ task = get_proc_task(inode);
+ if (task == current)
+ allowed = 1;
+ if (task && !allowed) {
+ int alive;
- while (mnt != our_vfsmnt) {
- if (mnt == mnt->mnt_parent)
- goto out;
- de = mnt->mnt_mountpoint;
- mnt = mnt->mnt_parent;
+ task_lock(task);
+ alive = !!task->mm;
+ task_unlock(task);
+ if (alive)
+ /* For a living task obey ptrace_may_attach */
+ allowed = ptrace_may_attach(task);
+ else
+ /* For a special task simply check the capability */
+ allowed = capable(CAP_SYS_PTRACE);
}
-
- if (!is_subdir(de, base))
- goto out;
- spin_unlock(&vfsmount_lock);
-
-exit:
- dput(base);
- mntput(our_vfsmnt);
- return res;
-out:
- spin_unlock(&vfsmount_lock);
- res = -EACCES;
- goto exit;
+ if (task)
+ put_task_struct(task);
+ return allowed;
}
extern struct seq_operations mounts_op;
@@ -1062,52 +1054,6 @@ static struct file_operations proc_seccomp_operations = {
};
#endif /* CONFIG_SECCOMP */
-static int proc_check_dentry_visible(struct inode *inode,
- struct dentry *dentry, struct vfsmount *mnt)
-{
- /* Verify that the current process can already see the
- * file pointed at by the file descriptor.
- * This prevents /proc from being an accidental information leak.
- *
- * This prevents access to files that are not visible do to
- * being on the otherside of a chroot, in a different
- * namespace, or are simply process local (like pipes).
- */
- struct task_struct *task;
- int error = -EACCES;
-
- /* See if the the two tasks share a commone set of
- * file descriptors. If so everything is visible.
- */
- rcu_read_lock();
- task = tref_task(proc_tref(inode));
- if (task) {
- struct files_struct *task_files, *files;
- /* This test answeres the question:
- * Is there a point in time since we looked up the
- * file descriptor where the two tasks share the
- * same files struct?
- */
- rmb();
- files = current->files;
- task_files = task->files;
- if (files && (files == task_files))
- error = 0;
- }
- rcu_read_unlock();
- if (!error)
- goto out;
-
- /* If the two tasks don't share a common set of file
- * descriptors see if the destination dentry is already
- * visible in the current tasks filesystem namespace.
- */
- error = proc_check_chroot(dentry, mnt);
-out:
- return error;
-
-}
-
static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
@@ -1116,18 +1062,12 @@ static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
/* We don't need a base pointer in the /proc filesystem */
path_release(nd);
- if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
+ /* Are we allowed to snoop on the tasks file descriptors? */
+ if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
nd->last_type = LAST_BIND;
- if (error)
- goto out;
-
- /* Only return files this task can already see */
- error = proc_check_dentry_visible(inode, nd->dentry, nd->mnt);
- if (error)
- path_release(nd);
out:
return ERR_PTR(error);
}
@@ -1165,21 +1105,15 @@ static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int b
struct dentry *de;
struct vfsmount *mnt = NULL;
-
- if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
+ /* Are we allowed to snoop on the tasks file descriptors? */
+ if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
if (error)
goto out;
- /* Only return files this task can already see */
- error = proc_check_dentry_visible(inode, de, mnt);
- if (error)
- goto out_put;
-
error = do_proc_readlink(de, mnt, buffer, buflen);
-out_put:
dput(de);
mntput(mnt);
out: