aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/kprobes.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/kprobes.txt')
-rw-r--r--Documentation/kprobes.txt81
1 files changed, 69 insertions, 12 deletions
diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt
index 53a6389..30c1017 100644
--- a/Documentation/kprobes.txt
+++ b/Documentation/kprobes.txt
@@ -96,7 +96,9 @@ or in registers (e.g., for x86_64 or for an i386 fastcall function).
The jprobe will work in either case, so long as the handler's
prototype matches that of the probed function.
-1.3 How Does a Return Probe Work?
+1.3 Return Probes
+
+1.3.1 How Does a Return Probe Work?
When you call register_kretprobe(), Kprobes establishes a kprobe at
the entry to the function. When the probed function is called and this
@@ -107,9 +109,9 @@ At boot time, Kprobes registers a kprobe at the trampoline.
When the probed function executes its return instruction, control
passes to the trampoline and that probe is hit. Kprobes' trampoline
-handler calls the user-specified handler associated with the kretprobe,
-then sets the saved instruction pointer to the saved return address,
-and that's where execution resumes upon return from the trap.
+handler calls the user-specified return handler associated with the
+kretprobe, then sets the saved instruction pointer to the saved return
+address, and that's where execution resumes upon return from the trap.
While the probed function is executing, its return address is
stored in an object of type kretprobe_instance. Before calling
@@ -131,6 +133,30 @@ zero when the return probe is registered, and is incremented every
time the probed function is entered but there is no kretprobe_instance
object available for establishing the return probe.
+1.3.2 Kretprobe entry-handler
+
+Kretprobes also provides an optional user-specified handler which runs
+on function entry. This handler is specified by setting the entry_handler
+field of the kretprobe struct. Whenever the kprobe placed by kretprobe at the
+function entry is hit, the user-defined entry_handler, if any, is invoked.
+If the entry_handler returns 0 (success) then a corresponding return handler
+is guaranteed to be called upon function return. If the entry_handler
+returns a non-zero error then Kprobes leaves the return address as is, and
+the kretprobe has no further effect for that particular function instance.
+
+Multiple entry and return handler invocations are matched using the unique
+kretprobe_instance object associated with them. Additionally, a user
+may also specify per return-instance private data to be part of each
+kretprobe_instance object. This is especially useful when sharing private
+data between corresponding user entry and return handlers. The size of each
+private data object can be specified at kretprobe registration time by
+setting the data_size field of the kretprobe struct. This data can be
+accessed through the data field of each kretprobe_instance object.
+
+In case probed function is entered but there is no kretprobe_instance
+object available, then in addition to incrementing the nmissed count,
+the user entry_handler invocation is also skipped.
+
2. Architectures Supported
Kprobes, jprobes, and return probes are implemented on the following
@@ -274,6 +300,8 @@ of interest:
- ret_addr: the return address
- rp: points to the corresponding kretprobe object
- task: points to the corresponding task struct
+- data: points to per return-instance private data; see "Kretprobe
+ entry-handler" for details.
The regs_return_value(regs) macro provides a simple abstraction to
extract the return value from the appropriate register as defined by
@@ -556,23 +584,52 @@ report failed calls to sys_open().
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
+#include <linux/ktime.h>
+
+/* per-instance private data */
+struct my_data {
+ ktime_t entry_stamp;
+};
static const char *probed_func = "sys_open";
-/* Return-probe handler: If the probed function fails, log the return value. */
-static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+/* Timestamp function entry. */
+static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ struct my_data *data;
+
+ if(!current->mm)
+ return 1; /* skip kernel threads */
+
+ data = (struct my_data *)ri->data;
+ data->entry_stamp = ktime_get();
+ return 0;
+}
+
+/* If the probed function failed, log the return value and duration.
+ * Duration may turn out to be zero consistently, depending upon the
+ * granularity of time accounting on the platform. */
+static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
int retval = regs_return_value(regs);
+ struct my_data *data = (struct my_data *)ri->data;
+ s64 delta;
+ ktime_t now;
+
if (retval < 0) {
- printk("%s returns %d\n", probed_func, retval);
+ now = ktime_get();
+ delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
+ printk("%s: return val = %d (duration = %lld ns)\n",
+ probed_func, retval, delta);
}
return 0;
}
static struct kretprobe my_kretprobe = {
- .handler = ret_handler,
- /* Probe up to 20 instances concurrently. */
- .maxactive = 20
+ .handler = return_handler,
+ .entry_handler = entry_handler,
+ .data_size = sizeof(struct my_data),
+ .maxactive = 20, /* probe up to 20 instances concurrently */
};
static int __init kretprobe_init(void)
@@ -584,7 +641,7 @@ static int __init kretprobe_init(void)
printk("register_kretprobe failed, returned %d\n", ret);
return -1;
}
- printk("Planted return probe at %p\n", my_kretprobe.kp.addr);
+ printk("Kretprobe active on %s\n", my_kretprobe.kp.symbol_name);
return 0;
}
@@ -594,7 +651,7 @@ static void __exit kretprobe_exit(void)
printk("kretprobe unregistered\n");
/* nmissed > 0 suggests that maxactive was set too low. */
printk("Missed probing %d instances of %s\n",
- my_kretprobe.nmissed, probed_func);
+ my_kretprobe.nmissed, probed_func);
}
module_init(kretprobe_init)