diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/hwmon/Kconfig | 12 | ||||
-rw-r--r-- | drivers/hwmon/Makefile | 1 | ||||
-rw-r--r-- | drivers/hwmon/abituguru.c | 1391 |
3 files changed, 1404 insertions, 0 deletions
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 164760d..6fb93d6 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig @@ -27,6 +27,18 @@ config HWMON_VID tristate default n +config SENSORS_ABITUGURU + tristate "Abit uGuru" + depends on HWMON && EXPERIMENTAL + help + If you say yes here you get support for the Abit uGuru chips + sensor part. The voltage and frequency control parts of the Abit + uGuru are not supported. The Abit uGuru chip can be found on Abit + uGuru featuring motherboards (most modern Abit motherboards). + + This driver can also be built as a module. If so, the module + will be called abituguru. + config SENSORS_ADM1021 tristate "Analog Devices ADM1021 and compatibles" depends on HWMON && I2C diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index db72b14..5092999 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -12,6 +12,7 @@ obj-$(CONFIG_SENSORS_W83792D) += w83792d.o obj-$(CONFIG_SENSORS_W83781D) += w83781d.o obj-$(CONFIG_SENSORS_W83791D) += w83791d.o +obj-$(CONFIG_SENSORS_ABITUGURU) += abituguru.o obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c new file mode 100644 index 0000000..bf2cb0a --- /dev/null +++ b/drivers/hwmon/abituguru.c @@ -0,0 +1,1391 @@ +/* + abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ +/* + This driver supports the sensor part of the custom Abit uGuru chip found + on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM / + etc voltage & frequency control is not supported! +*/ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/mutex.h> +#include <linux/err.h> +#include <linux/platform_device.h> +#include <linux/hwmon.h> +#include <linux/hwmon-sysfs.h> +#include <asm/io.h> + +/* Banks */ +#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ +#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ +#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ +#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ +/* max nr of sensors in bank2, currently mb's with max 6 fans are known */ +#define ABIT_UGURU_MAX_BANK2_SENSORS 6 +/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ +#define ABIT_UGURU_MAX_PWMS 5 +/* uGuru sensor bank 1 flags */ /* Alarm if: */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ +/* uGuru sensor bank 2 flags */ /* Alarm if: */ +#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ +/* uGuru sensor bank common flags */ +#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ +#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ +/* uGuru fan PWM (speed control) flags */ +#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ +/* Values used for conversion */ +#define ABIT_UGURU_FAN_MAX 15300 /* RPM */ +/* Bank1 sensor types */ +#define ABIT_UGURU_IN_SENSOR 0 +#define ABIT_UGURU_TEMP_SENSOR 1 +#define ABIT_UGURU_NC 2 +/* Timeouts / Retries, if these turn out to need a lot of fiddling we could + convert them to params. */ +/* 250 was determined by trial and error, 200 works most of the time, but not + always. I assume this is cpu-speed independent, since the ISA-bus and not + the CPU should be the bottleneck. Note that 250 sometimes is still not + enough (only reported on AN7 mb) this is handled by a higher layer. */ +#define ABIT_UGURU_WAIT_TIMEOUT 250 +/* Normally all expected status in abituguru_ready, are reported after the + first read, but sometimes not and we need to poll, 5 polls was not enough + 50 sofar is. */ +#define ABIT_UGURU_READY_TIMEOUT 50 +/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ +#define ABIT_UGURU_MAX_RETRIES 3 +#define ABIT_UGURU_RETRY_DELAY (HZ/5) +/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is a error */ +#define ABIT_UGURU_MAX_TIMEOUTS 2 + +/* All the variables below are named identical to the oguru and oguru2 programs + reverse engineered by Olle Sandberg, hence the names might not be 100% + logical. I could come up with better names, but I prefer keeping the names + identical so that this driver can be compared with his work more easily. */ +/* Two i/o-ports are used by uGuru */ +#define ABIT_UGURU_BASE 0x00E0 +/* Used to tell uGuru what to read and to read the actual data */ +#define ABIT_UGURU_CMD 0x00 +/* Mostly used to check if uGuru is busy */ +#define ABIT_UGURU_DATA 0x04 +#define ABIT_UGURU_REGION_LENGTH 5 +/* uGuru status' */ +#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ +#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ +#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ +#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ +/* utility macros */ +#define ABIT_UGURU_NAME "abituguru" +#define ABIT_UGURU_DEBUG(level, format, arg...) \ + if (level <= verbose) \ + printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) + +/* Constants */ +/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ +static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; +/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values + correspond to 300-3000 RPM */ +static const u8 abituguru_bank2_min_threshold = 5; +static const u8 abituguru_bank2_max_threshold = 50; +/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 + are temperature trip points. */ +static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; +/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a + special case the minium allowed pwm% setting for this is 30% (77) on + some MB's this special case is handled in the code! */ +static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; +static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; + + +/* Insmod parameters */ +static int force; +module_param(force, bool, 0); +MODULE_PARM_DESC(force, "Set to one to force detection."); +static int fan_sensors; +module_param(fan_sensors, int, 0); +MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " + "(0 = autodetect)"); +static int pwms; +module_param(pwms, int, 0); +MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " + "(0 = autodetect)"); + +/* Default verbose is 2, since this driver is still in the testing phase */ +static int verbose = 2; +module_param(verbose, int, 0644); +MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" + " 0 normal output\n" + " 1 + verbose error reporting\n" + " 2 + sensors type probing info\n" + " 3 + retryable error reporting"); + + +/* For the Abit uGuru, we need to keep some data in memory. + The structure is dynamically allocated, at the same time when a new + abituguru device is allocated. */ +struct abituguru_data { + struct class_device *class_dev; /* hwmon registered device */ + struct mutex update_lock; /* protect access to data and uGuru */ + unsigned long last_updated; /* In jiffies */ + unsigned short addr; /* uguru base address */ + char uguru_ready; /* is the uguru in ready state? */ + unsigned char update_timeouts; /* number of update timeouts since last + successful update */ + + /* The sysfs attr and their names are generated automatically, for bank1 + we cannot use a predefined array because we don't know beforehand + of a sensor is a volt or a temp sensor, for bank2 and the pwms its + easier todo things the same way. For in sensors we have 9 (temp 7) + sysfs entries per sensor, for bank2 and pwms 6. */ + struct sensor_device_attribute_2 sysfs_attr[16 * 9 + + ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; + /* Buffer to store the dynamically generated sysfs names, we need 2120 + bytes for bank1 (worst case scenario of 16 in sensors), 444 bytes + for fan1-6 and 738 bytes for pwm1-6 + some room to spare in case I + miscounted :) */ + char bank1_names[3400]; + + /* Bank 1 data */ + u8 bank1_sensors[2]; /* number of [0] in, [1] temp sensors */ + u8 bank1_address[2][16];/* addresses of [0] in, [1] temp sensors */ + u8 bank1_value[16]; + /* This array holds 16 x 3 entries for all the bank 1 sensor settings + (flags, min, max for voltage / flags, warn, shutdown for temp). */ + u8 bank1_settings[16][3]; + /* Maximum value for each sensor used for scaling in mV/millidegrees + Celsius. */ + int bank1_max_value[16]; + + /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ + u8 bank2_sensors; /* actual number of bank2 sensors found */ + u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; + u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ + + /* Alarms 2 bytes for bank1, 1 byte for bank2 */ + u8 alarms[3]; + + /* Fan PWM (speed control) 5 bytes per PWM */ + u8 pwms; /* actual number of pwms found */ + u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; +}; + +/* wait till the uguru is in the specified state */ +static int abituguru_wait(struct abituguru_data *data, u8 state) +{ + int timeout = ABIT_UGURU_WAIT_TIMEOUT; + + while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { + timeout--; + if (timeout == 0) + return -EBUSY; + } + return 0; +} + +/* Put the uguru in ready for input state */ +static int abituguru_ready(struct abituguru_data *data) +{ + int timeout = ABIT_UGURU_READY_TIMEOUT; + + if (data->uguru_ready) + return 0; + + /* Reset? / Prepare for next read/write cycle */ + outb(0x00, data->addr + ABIT_UGURU_DATA); + + /* Wait till the uguru is ready */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { + ABIT_UGURU_DEBUG(1, + "timeout exceeded waiting for ready state\n"); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "CMD reg does not hold 0xAC after ready command\n"); + return -EIO; + } + } + + /* After this the ABIT_UGURU_DATA port should contain + ABIT_UGURU_STATUS_INPUT */ + timeout = ABIT_UGURU_READY_TIMEOUT; + while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "state != more input after ready command\n"); + return -EIO; + } + } + + data->uguru_ready = 1; + return 0; +} + +/* Send the bank and then sensor address to the uGuru for the next read/write + cycle. This function gets called as the first part of a read/write by + abituguru_read and abituguru_write. This function should never be + called by any other function. */ +static int abituguru_send_address(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, int retries) +{ + /* assume the caller does error handling itself if it has not requested + any retries, and thus be quiet. */ + int report_errors = retries; + + for (;;) { + /* Make sure the uguru is ready and then send the bank address, + after this the uguru is no longer "ready". */ + if (abituguru_ready(data) != 0) + return -EIO; + outb(bank_addr, data->addr + ABIT_UGURU_DATA); + data->uguru_ready = 0; + + /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again + and send the sensor addr */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { + if (retries) { + ABIT_UGURU_DEBUG(3, "timeout exceeded " + "waiting for more input state, %d " + "tries remaining\n", retries); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(ABIT_UGURU_RETRY_DELAY); + retries--; + continue; + } + if (report_errors) + ABIT_UGURU_DEBUG(1, "timeout exceeded " + "waiting for more input state " + "(bank: %d)\n", (int)bank_addr); + return -EBUSY; + } + outb(sensor_addr, data->addr + ABIT_UGURU_CMD); + return 0; + } +} + +/* Read count bytes from sensor sensor_addr in bank bank_addr and store the + result in buf, retry the send address part of the read retries times. */ +static int abituguru_read(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, retries); + if (i) + return i; + + /* And read the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "read state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + buf[i] = inb(data->addr + ABIT_UGURU_CMD); + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send + address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ +static int abituguru_write(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, + ABIT_UGURU_MAX_RETRIES); + if (i) + return i; + + /* And write the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "write state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + outb(buf[i], data->addr + ABIT_UGURU_CMD); + } + + /* Now we need to wait till the chip is ready to be read again, + don't ask why */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " + "after write (bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write " + "(bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Detect sensor type. Temp and Volt sensors are enabled with + different masks and will ignore enable masks not meant for them. + This enables us to test what kind of sensor we're dealing with. + By setting the alarm thresholds so that we will always get an + alarm for sensor type X and then enabling the sensor as sensor type + X, if we then get an alarm it is a sensor of type X. */ +static int __devinit +abituguru_detect_bank1_sensor_type(struct abituguru_data *data, + u8 sensor_addr) +{ + u8 val, buf[3]; + int ret = ABIT_UGURU_NC; + + /* First read the sensor and the current settings */ + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, + 1, ABIT_UGURU_MAX_RETRIES) != 1) + return -EIO; + + /* Test val is sane / usable for sensor type detection. */ + if ((val < 10u) || (val > 240u)) { + printk(KERN_WARNING ABIT_UGURU_NAME + ": bank1-sensor: %d reading (%d) too close to limits, " + "unable to determine sensor type, skipping sensor\n", + (int)sensor_addr, (int)val); + /* assume no sensor is there for sensors for which we can't + determine the sensor type because their reading is too close + to their limits, this usually means no sensor is there. */ + return ABIT_UGURU_NC; + } + + ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); + /* Volt sensor test, enable volt low alarm, set min value ridicously + high. If its a volt sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; + buf[1] = 245; + buf[2] = 250; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 20 ms to give the uguru time to read the sensors + and raise a voltage alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/50); + /* Check for alarm and check the alarm is a volt low alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) { + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + sensor_addr, + data->bank1_settings[sensor_addr], + 3) != 3) + return -EIO; + ABIT_UGURU_DEBUG(2, " found volt sensor\n"); + return ABIT_UGURU_IN_SENSOR; + } else + ABIT_UGURU_DEBUG(2, " alarm raised during volt " + "sensor test, but volt low flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " + "test\n"); + + /* Temp sensor test, enable sensor as a temp sensor, set beep value + ridicously low (but not too low, otherwise uguru ignores it). + If its a temp sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; + buf[1] = 5; + buf[2] = 10; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 50 ms to give the uguru time to read the sensors + and raise a temp alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/20); + /* Check for alarm and check the alarm is a temp high alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { + ret = ABIT_UGURU_TEMP_SENSOR; + ABIT_UGURU_DEBUG(2, " found temp sensor\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm raised during temp " + "sensor test, but temp high flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " + "test\n"); + + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + data->bank1_settings[sensor_addr], 3) != 3) + return -EIO; + + return ret; +} + +/* These functions try to find out how many sensors there are in bank2 and how + many pwms there are. The purpose of this is to make sure that we don't give + the user the possibility to change settings for non-existent sensors / pwm. + The uGuru will happily read / write whatever memory happens to be after the + memory storing the PWM settings when reading/writing to a PWM which is not + there. Notice even if we detect a PWM which doesn't exist we normally won't + write to it, unless the user tries to change the settings. + + Although the uGuru allows reading (settings) from non existing bank2 + sensors, my version of the uGuru does seem to stop writing to them, the + write function above aborts in this case with: + "CMD reg does not hold 0xAC after write" + + Notice these 2 tests are non destructive iow read-only tests, otherwise + they would defeat their purpose. Although for the bank2_sensors detection a + read/write test would be feasible because of the reaction above, I've + however opted to stay on the safe side. */ +static void __devinit +abituguru_detect_no_bank2_sensors(struct abituguru_data *data) +{ + int i; + + if (fan_sensors) { + data->bank2_sensors = fan_sensors; + ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " + "\"fan_sensors\" module param\n", + (int)data->bank2_sensors); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + /* 0x89 are the known used bits: + -0x80 enable shutdown + -0x08 enable beep + -0x01 enable alarm + All other bits should be 0, but on some motherboards + 0x40 (bit 6) is also high, at least for fan1 */ + if ((!i && (data->bank2_settings[i][0] & ~0xC9)) || + (i && (data->bank2_settings[i][0] & ~0x89))) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: settings[0] = %02X\n", + i, (unsigned int)data->bank2_settings[i][0]); + break; + } + + /* check if the threshold is within the allowed range */ + if (data->bank2_settings[i][1] < + abituguru_bank2_min_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "below the minimum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_min_threshold); + break; + } + if (data->bank2_settings[i][1] > + abituguru_bank2_max_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "above the maximum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_max_threshold); + break; + } + } + + data->bank2_sensors = i; + ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", + (int)data->bank2_sensors); +} + +static void __devinit +abituguru_detect_no_pwms(struct abituguru_data *data) +{ + int i, j; + + if (pwms) { + data->pwms = pwms; + ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " + "\"pwms\" module param\n", (int)data->pwms); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + /* 0x80 is the enable bit and the low + nibble is which temp sensor to use, + the other bits should be 0 */ + if (data->pwm_settings[i][0] & ~0x8F) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: settings[0] = %02X\n", + i, (unsigned int)data->pwm_settings[i][0]); + break; + } + + /* the low nibble must correspond to one of the temp sensors + we've found */ + for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; + j++) { + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == + (data->pwm_settings[i][0] & 0x0F)) + break; + } + if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: %d is not a valid temp " + "sensor address\n", i, + data->pwm_settings[i][0] & 0x0F); + break; + } + + /* check if all other settings are within the allowed range */ + for (j = 1; j < 5; j++) { + u8 min; + /* special case pwm1 min pwm% */ + if ((i == 0) && ((j == 1) || (j == 2))) + min = 77; + else + min = abituguru_pwm_min[j]; + if (data->pwm_settings[i][j] < min) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is below the minimum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)min); + goto abituguru_detect_no_pwms_exit; + } + if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is above the maximum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)abituguru_pwm_max[j]); + goto abituguru_detect_no_pwms_exit; + } + } + + /* check that min temp < max temp and min pwm < max pwm */ + if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min pwm (%d) >= " + "max pwm (%d)\n", i, + (int)data->pwm_settings[i][1], + (int)data->pwm_settings[i][2]); + break; + } + if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min temp (%d) >= " + "max temp (%d)\n", i, + (int)data->pwm_settings[i][3], + (int)data->pwm_settings[i][4]); + break; + } + } + +abituguru_detect_no_pwms_exit: + data->pwms = i; + ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); +} + +/* Following are the sysfs callback functions. These functions expect: + sensor_device_attribute_2->index: sensor address/offset in the bank + sensor_device_attribute_2->nr: register offset, bitmask or NA. */ +static struct abituguru_data *abituguru_update_device(struct device *dev); + +static ssize_t show_bank1_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank1_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank1_settings[attr->index][attr->nr] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank2_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t show_bank2_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank2_settings[attr->index][attr->nr] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t store_bank1_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10) * 255 + + data->bank1_max_value[attr->index]/2) / + data->bank1_max_value[attr->index]; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (data->bank1_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank1_settings[attr->index][attr->nr]; + data->bank1_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + attr->index, data->bank1_settings[attr->index], + 3) <= attr->nr) { + data->bank1_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) / + ABIT_UGURU_FAN_MAX; + ssize_t ret = count; + + /* this check can be done before taking the lock */ + if ((val < abituguru_bank2_min_threshold) || + (val > abituguru_bank2_max_threshold)) + return -EINVAL; + + mutex_lock(&data->update_lock); + if (data->bank2_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank2_settings[attr->index][attr->nr]; + data->bank2_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, + attr->index, data->bank2_settings[attr->index], + 2) <= attr->nr) { + data->bank2_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_bank1_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + /* See if the alarm bit for this sensor is set, and if the + alarm matches the type of alarm we're looking for (for volt + it can be either low or high). The type is stored in a few + readonly bits in the settings part of the relevant sensor. + The bitmask of the type is passed to us in attr->nr. */ + if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && + (data->bank1_settings[attr->index][0] & attr->nr)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + if (data->alarms[2] & (0x01 << attr->index)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank1_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank1_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank2_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t store_bank1_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank1_settings[attr->index][0]; + + if (mask) + data->bank1_settings[attr->index][0] |= attr->nr; + else + data->bank1_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank1_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, + data->bank1_settings[attr->index], 3) < 1)) { + data->bank1_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank2_settings[attr->index][0]; + + if (mask) + data->bank2_settings[attr->index][0] |= attr->nr; + else + data->bank2_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank2_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, + data->bank2_settings[attr->index], 2) < 1)) { + data->bank2_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +/* Fan PWM (speed control) */ +static ssize_t show_pwm_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * + abituguru_pwm_settings_multiplier[attr->nr]); +} + +static ssize_t store_pwm_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 min, val = (simple_strtoul(buf, NULL, 10) + + abituguru_pwm_settings_multiplier[attr->nr]/2) / + abituguru_pwm_settings_multiplier[attr->nr]; + ssize_t ret = count; + + /* special case pwm1 min pwm% */ + if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) + min = 77; + else + min = abituguru_pwm_min[attr->nr]; + + /* this check can be done before taking the lock */ + if ((val < min) || (val > abituguru_pwm_max[attr->nr])) + return -EINVAL; + + mutex_lock(&data->update_lock); + /* this check needs to be done after taking the lock */ + if ((attr->nr & 1) && + (val >= data->pwm_settings[attr->index][attr->nr + 1])) + ret = -EINVAL; + else if (!(attr->nr & 1) && + (val <= data->pwm_settings[attr->index][attr->nr - 1])) + ret = -EINVAL; + else if (data->pwm_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->pwm_settings[attr->index][attr->nr]; + data->pwm_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) <= attr->nr) { + data->pwm_settings[attr->index][attr->nr] = + orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_sensor(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int i; + /* We need to walk to the temp sensor addresses to find what + the userspace id of the configured temp sensor is. */ + for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == + (data->pwm_settings[attr->index][0] & 0x0F)) + return sprintf(buf, "%d\n", i+1); + + return -ENXIO; +} + +static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + unsigned long val = simple_strtoul(buf, NULL, 10) - 1; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + u8 orig_val = data->pwm_settings[attr->index][0]; + u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; + data->pwm_settings[attr->index][0] &= 0xF0; + data->pwm_settings[attr->index][0] |= address; + if (data->pwm_settings[attr->index][0] != orig_val) { + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, + data->pwm_settings[attr->index], + 5) < 1) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + } + } + else + ret = -EINVAL; + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_enable(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int res = 0; + if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) + res = 2; + return sprintf(buf, "%d\n", res); +} + +static ssize_t store_pwm_enable(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 orig_val, user_val = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + + mutex_lock(&data->update_lock); + orig_val = data->pwm_settings[attr->index][0]; + switch (user_val) { + case 0: + data->pwm_settings[attr->index][0] &= + ~ABIT_UGURU_FAN_PWM_ENABLE; + break; + case 2: + data->pwm_settings[attr->index][0] |= + ABIT_UGURU_FAN_PWM_ENABLE; + break; + default: + ret = -EINVAL; + } + if ((data->pwm_settings[attr->index][0] != orig_val) && + (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) < 1)) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_name(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + return sprintf(buf, "%s\n", ABIT_UGURU_NAME); +} + +/* Sysfs attr templates, the real entries are generated automatically. */ +static const +struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { + { + SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), + SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), + }, { + SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), + } +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { + SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, + store_bank2_setting, 1, 0), + SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { + SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, + store_pwm_enable, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, + store_pwm_sensor, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, + store_pwm_setting, 1, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, + store_pwm_setting, 2, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, + store_pwm_setting, 3, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, + store_pwm_setting, 4, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { + SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), +}; + +static int __devinit abituguru_probe(struct platform_device *pdev) +{ + struct abituguru_data *data; + int i, j, res; + char *sysfs_filename; + int sysfs_attr_i = 0; + + /* El weirdo probe order, to keep the sysfs order identical to the + BIOS and window-appliction listing order. */ + const u8 probe_order[16] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, + 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; + + if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL))) + return -ENOMEM; + + data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; + mutex_init(&data->update_lock); + platform_set_drvdata(pdev, data); + + /* See if the uGuru is ready */ + if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) + data->uguru_ready = 1; + + /* Completely read the uGuru this has 2 purposes: + - testread / see if one really is there. + - make an in memory copy of all the uguru settings for future use. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + + for (i = 0; i < 16; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, + data->bank1_settings[i], 3, + ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + } + /* Note: We don't know how many bank2 sensors / pwms there really are, + but in order to "detect" this we need to read the maximum amount + anyways. If we read sensors/pwms not there we'll just read crap + this can't hurt. We need the detection because we don't want + unwanted writes, which will hurt! */ + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, + data->bank2_settings[i], 2, + ABIT_UGURU_MAX_RETRIES) != 2) { + kfree(data); + return -ENODEV; + } + } + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, + data->pwm_settings[i], 5, + ABIT_UGURU_MAX_RETRIES) != 5) { + kfree(data); + return -ENODEV; + } + } + data->last_updated = jiffies; + + /* Detect sensor types and fill the sysfs attr for bank1 */ + sysfs_filename = data->bank1_names; + for (i = 0; i < 16; i++) { + res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); + if (res < 0) { + kfree(data); + return -ENODEV; + } + if (res == ABIT_UGURU_NC) + continue; + + for (j = 0; j < (res ? 7 : 9); j++) { + const char *name_templ = abituguru_sysfs_bank1_templ[ + res][j].dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_bank1_templ[res][j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + data->bank1_sensors[res] + res) + 1; + data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; + sysfs_attr_i++; + } + data->bank1_max_value[probe_order[i]] = + abituguru_bank1_max_value[res]; + data->bank1_address[res][data->bank1_sensors[res]] = + probe_order[i]; + data->bank1_sensors[res]++; + } + /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ + abituguru_detect_no_bank2_sensors(data); + for (i = 0; i < data->bank2_sensors; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_fan_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_fan_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Detect number of sensors and fill the sysfs attr for pwms */ + abituguru_detect_no_pwms(data); + for (i = 0; i < data->pwms; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_pwm_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_pwm_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Last add any "generic" entries to sysfs */ + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { + data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_attr[i]; + sysfs_attr_i++; + } + printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n"); + + /* Register sysfs hooks */ + data->class_dev = hwmon_device_register(&pdev->dev); + if (IS_ERR(data->class_dev)) { + kfree(data); + return PTR_ERR(data->class_dev); + } + for (i = 0; i < sysfs_attr_i; i++) + device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); + + return 0; +} + +static int __devexit abituguru_remove(struct platform_device *pdev) +{ + struct abituguru_data *data = platform_get_drvdata(pdev); + + platform_set_drvdata(pdev, NULL); + hwmon_device_unregister(data->class_dev); + kfree(data); + + return 0; +} + +static struct abituguru_data *abituguru_update_device(struct device *dev) +{ + int i, err; + struct abituguru_data *data = dev_get_drvdata(dev); + /* fake a complete successful read if no update necessary. */ + char success = 1; + + mutex_lock(&data->update_lock); + if (time_after(jiffies, data->last_updated + HZ)) { + success = 0; + if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, 0)) != 3) + goto LEAVE_UPDATE; + for (i = 0; i < 16; i++) { + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1 + 1, i, + data->bank1_settings[i], 3, 0)) != 3) + goto LEAVE_UPDATE; + } + for (i = 0; i < data->bank2_sensors; i++) + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + /* success! */ + success = 1; + data->update_timeouts = 0; +LEAVE_UPDATE: + /* handle timeout condition */ + if (err == -EBUSY) { + /* No overflow please */ + if (data->update_timeouts < 255u) + data->update_timeouts++; + if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { + ABIT_UGURU_DEBUG(3, "timeout exceeded, will " + "try again next update\n"); + /* Just a timeout, fake a successful read */ + success = 1; + } else + ABIT_UGURU_DEBUG(1, "timeout exceeded %d " + "times waiting for more input state\n", + (int)data->update_timeouts); + } + /* On success set last_updated */ + if (success) + data->last_updated = jiffies; + } + mutex_unlock(&data->update_lock); + + if (success) + return data; + else + return NULL; +} + +static struct platform_driver abituguru_driver = { + .driver = { + .owner = THIS_MODULE, + .name = ABIT_UGURU_NAME, + }, + .probe = abituguru_probe, + .remove = __devexit_p(abituguru_remove), +}; + +static int __init abituguru_detect(void) +{ + /* See if there is an uguru there. After a reboot uGuru will hold 0x00 + at DATA and 0xAC, when this driver has already been loaded once + DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either + scenario but some will hold 0x00. + Some uGuru's initally hold 0x09 at DATA and will only hold 0x08 + after reading CMD first, so CMD must be read first! */ + u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); + u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); + if (((data_val == 0x00) || (data_val == 0x08)) && + ((cmd_val == 0x00) || (cmd_val == 0xAC))) + return ABIT_UGURU_BASE; + + ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " + "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); + + if (force) { + printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is " + "present because of \"force\" parameter\n"); + return ABIT_UGURU_BASE; + } + + /* No uGuru found */ + return -ENODEV; +} + +static struct platform_device *abituguru_pdev; + +static int __init abituguru_init(void) +{ + int address, err; + struct resource res = { .flags = IORESOURCE_IO }; + + address = abituguru_detect(); + if (address < 0) + return address; + + err = platform_driver_register(&abituguru_driver); + if (err) + goto exit; + + abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); + if (!abituguru_pdev) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device allocation failed\n"); + err = -ENOMEM; + goto exit_driver_unregister; + } + + res.start = address; + res.end = address + ABIT_UGURU_REGION_LENGTH - 1; + res.name = ABIT_UGURU_NAME; + + err = platform_device_add_resources(abituguru_pdev, &res, 1); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device resource addition failed (%d)\n", err); + goto exit_device_put; + } + + err = platform_device_add(abituguru_pdev); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device addition failed (%d)\n", err); + goto exit_device_put; + } + + return 0; + +exit_device_put: + platform_device_put(abituguru_pdev); +exit_driver_unregister: + platform_driver_unregister(&abituguru_driver); +exit: + return err; +} + +static void __exit abituguru_exit(void) +{ + platform_device_unregister(abituguru_pdev); + platform_driver_unregister(&abituguru_driver); +} + +MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>"); +MODULE_DESCRIPTION("Abit uGuru Sensor device"); +MODULE_LICENSE("GPL"); + +module_init(abituguru_init); +module_exit(abituguru_exit); |