| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c5857ccf293968348e5eb4ebedc68074de3dcda6 upstream.
With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.
[ Merged in fixes from Sedat to find some last missing references to
rand_initialize_irq() ]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 27130f0cc3ab97560384da437e4621fc4e94f21c upstream.
wm831x devices contain a unique ID value. Feed this into the newly added
device_add_randomness() to add some per device seed data to the pool.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 9dccf55f4cb011a7552a8a2749a580662f5ed8ed upstream.
The tamper evident features of the RTC include the "write counter" which
is a pseudo-random number regenerated whenever we set the RTC. Since this
value is unpredictable it should provide some useful seeding to the random
number generator.
Only do this on boot since the goal is to seed the pool rather than add
useful entropy.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 330e0a01d54c2b8606c56816f99af6ebc58ec92c upstream.
Matt Mackall stepped down as the /dev/random driver maintainer last
year, so Theodore Ts'o is taking back the /dev/random driver.
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
| |
commit 00ce1db1a634746040ace24c09a4e3a7949a3145 upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c2557a303ab6712bb6e09447df828c557c710ac9 upstream.
Create a new function, get_random_bytes_arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get_random_bytes() to not use the HW RNG, even if it
is avaiable.
The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)
It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.
Since users of get_random_bytes() in the Linux kernel need to be able
to support hardware systems where the HW RNG is not present, most
time-sensitive users of this interface have already created their own
cryptographic RNG interface which uses get_random_bytes() as a seed.
So it's much better to use the HW RNG to improve the existing random
number generator, by mixing in any entropy returned by the HW RNG into
/dev/random's entropy pool, but to always _use_ /dev/random's entropy
pool.
This way we get almost of the benefits of the HW RNG without any
potential liabilities. The only benefits we forgo is the
speed/performance enhancements --- and generic kernel code can't
depend on depend on get_random_bytes() having the speed of a HW RNG
anyway.
For those places that really want access to the arch-specific HW RNG,
if it is available, we provide get_random_bytes_arch().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit e6d4947b12e8ad947add1032dd754803c6004824 upstream.
If the CPU supports a hardware random number generator, use it in
xfer_secondary_pool(), where it will significantly improve things and
where we can afford it.
Also, remove the use of the arch-specific rng in
add_timer_randomness(), since the call is significantly slower than
get_cycles(), and we're much better off using it in
xfer_secondary_pool() anyway.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
commit 7bf2357524408b97fec58344caf7397f8140c3fd upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: David Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit b04b3156a20d395a7faa8eed98698d1e17a36000 upstream.
Send the USB device's serial, product, and manufacturer strings to the
/dev/random driver to help seed its pools.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a2080a67abe9e314f9e9c2cc3a4a176e8a8f8793 upstream.
Add a new interface, add_device_randomness() for adding data to the
random pool that is likely to differ between two devices (or possibly
even per boot). This would be things like MAC addresses or serial
numbers, or the read-out of the RTC. This does *not* add any actual
entropy to the pool, but it initializes the pool to different values
for devices that might otherwise be identical and have very little
entropy available to them (particularly common in the embedded world).
[ Modified by tytso to mix in a timestamp, since there may be some
variability caused by the time needed to detect/configure the hardware
in question. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 902c098a3663de3fa18639efbb71b6080f0bcd3c upstream.
The real-time Linux folks don't like add_interrupt_randomness() taking
a spinlock since it is called in the low-level interrupt routine.
This also allows us to reduce the overhead in the fast path, for the
random driver, which is the interrupt collection path.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 775f4b297b780601e61787b766f306ed3e1d23eb upstream.
We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.
This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool. Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool. This
assures that /dev/urandom is returning unpredictable data as soon as
possible.
(Based on an original patch by Linus, but significantly modified by
tytso.)
Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 44e4360fa3384850d65dd36fb4e6e5f2f112709b upstream.
/proc/sys/kernel/random/boot_id can be read concurrently by userspace
processes. If two (or more) user-space processes concurrently read
boot_id when sysctl_bootid is not yet assigned, a race can occur making
boot_id differ between the reads. Because the whole point of the boot id
is to be unique across a kernel execution, fix this by protecting this
operation with a spinlock.
Given that this operation is not frequently used, hitting the spinlock
on each call should not be an issue.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 2dac8e54f988ab58525505d7ef982493374433c3 upstream.
When we are initializing using arch_get_random_long() we only need to
loop enough times to touch all the bytes in the buffer; using
poolwords for that does twice the number of operations necessary on a
64-bit machine, since in the random number generator code "word" means
32 bits.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3e88bdff1c65145f7ba297ccec69c774afe4c785 upstream.
If there is an architecture-specific random number generator (such as
RDRAND for Intel architectures), use it to initialize /dev/random's
entropy stores. Even in the worst case, if RDRAND is something like
AES(NSA_KEY, counter++), it won't hurt, and it will definitely help
against any other adversaries.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit cf833d0b9937874b50ef2867c4e8badfd64948ce upstream.
We still don't use rdrand in /dev/random, which just seems stupid. We
accept the *cycle*counter* as a random input, but we don't accept
rdrand? That's just broken.
Sure, people can do things in user space (write to /dev/random, use
rdrand in addition to /dev/random themselves etc etc), but that
*still* seems to be a particularly stupid reason for saying "we
shouldn't bother to try to do better in /dev/random".
And even if somebody really doesn't trust rdrand as a source of random
bytes, it seems singularly stupid to trust the cycle counter *more*.
So I'd suggest the attached patch. I'm not going to even bother
arguing that we should add more bits to the entropy estimate, because
that's not the point - I don't care if /dev/random fills up slowly or
not, I think it's just stupid to not use the bits we can get from
rdrand and mix them into the strong randomness pool.
Link: http://lkml.kernel.org/r/CA%2B55aFwn59N1=m651QAyTy-1gO1noGbK18zwKDwvwqnravA84A@mail.gmail.com
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bd29e568a4cb6465f6e5ec7c1c1f3ae7d99cbec1 upstream.
If there is an architecture-specific random number generator we use it
to acquire randomness one "long" at a time. We should put these random
words into consecutive words in the result buffer - not just overwrite
the first word again and again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 63d77173266c1791f1553e9e8ccea65dc87c4485 upstream.
Add support for architecture-specific hooks into the kernel-directed
random number generator interfaces. This patchset does not use the
architecture random number generator interfaces for the
userspace-directed interfaces (/dev/random and /dev/urandom), thus
eliminating the need to distinguish between them based on a pool
pointer.
Changes in version 3:
- Moved the hooks from extract_entropy() to get_random_bytes().
- Changes the hooks to inlines.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit d6250a3f12edb3a86db9598ffeca3de8b4a219e9 upstream.
The Intel case falls through into the generic case which then changes
the values. For cases like the P6 it doesn't do the right thing so
this seems to be a screwup.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-lww2uirad4skzjlmrm0vru8o@git.kernel.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit dd4c9260e7f23f2e951cbfb2726e468c6d30306c upstream.
The mesh path timer needs to be canceled when
leaving the mesh as otherwise it could fire
after the interface has been removed already.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3ad3d901bbcfb15a5e4690e55350db0899095a68 upstream.
mmu_notifier_release() is called when the process is exiting. It will
delete all the mmu notifiers. But at this time the page belonging to the
process is still present in page tables and is present on the LRU list, so
this race will happen:
CPU 0 CPU 1
mmu_notifier_release: try_to_unmap:
hlist_del_init_rcu(&mn->hlist);
ptep_clear_flush_notify:
mmu nofifler not found
free page !!!!!!
/*
* At the point, the page has been
* freed, but it is still mapped in
* the secondary MMU.
*/
mn->ops->release(mn, mm);
Then the box is not stable and sometimes we can get this bug:
[ 738.075923] BUG: Bad page state in process migrate-perf pfn:03bec
[ 738.075931] page:ffffea00000efb00 count:0 mapcount:0 mapping: (null) index:0x8076
[ 738.075936] page flags: 0x20000000000014(referenced|dirty)
The same issue is present in mmu_notifier_unregister().
We can call ->release before deleting the notifier to ensure the page has
been unmapped from the secondary MMU before it is freed.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit b74253f78400f9a4b42da84bb1de7540b88ce7c4 upstream.
The vivt_flush_cache_{range,page} functions check that the mm_struct
of the VMA being flushed has been active on the current CPU before
performing the cache maintenance.
The gate_vma has a NULL mm_struct pointer and, as such, will cause a
kernel fault if we try to flush it with the above operations. This
happens during ELF core dumps, which include the gate_vma as it may be
useful for debugging purposes.
This patch adds checks to the VIVT cache flushing functions so that VMAs
with a NULL mm_struct are flushed unconditionally (the vectors page may
be dirty if we use it to store the current TLS pointer).
Reported-by: Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>
Tested-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 5a783cbc48367cfc7b65afc75430953dfe60098f upstream.
Commit cdf357f1 ("ARM: 6299/1: errata: TLBIASIDIS and TLBIMVAIS
operations can broadcast a faulty ASID") replaced by-ASID TLB flushing
operations with all-ASID variants to workaround A9 erratum #720789.
This patch extends the workaround to include the tlb_range operations,
which were overlooked by the original patch.
Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit dc32f63453f56d07a1073a697dcd843dd3098c09 upstream.
Commit a6bc32b89922 ("mm: compaction: introduce sync-light migration for
use by compaction") changed the declaration of migrate_pages() and
migrate_huge_pages().
But it missed changing the argument of migrate_huge_pages() in
soft_offline_huge_page(). In this case, we should call
migrate_huge_pages() with MIGRATE_SYNC.
Additionally, there is a mismatch between type the of argument and the
function declaration for migrate_pages().
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 6c4088ac3a4d82779903433bcd5f048c58fb1aca upstream.
efi_setup_pcdp_console() is called during boot to parse the HCDP/PCDP
EFI system table and setup an early console for printk output. The
routine uses ioremap/iounmap to setup access to the HCDP/PCDP table
information.
The call to ioremap is happening early in the boot process which leads
to a panic on x86_64 systems:
panic+0x01ca
do_exit+0x043c
oops_end+0x00a7
no_context+0x0119
__bad_area_nosemaphore+0x0138
bad_area_nosemaphore+0x000e
do_page_fault+0x0321
page_fault+0x0020
reserve_memtype+0x02a1
__ioremap_caller+0x0123
ioremap_nocache+0x0012
efi_setup_pcdp_console+0x002b
setup_arch+0x03a9
start_kernel+0x00d4
x86_64_start_reservations+0x012c
x86_64_start_kernel+0x00fe
This replaces the calls to ioremap/iounmap in efi_setup_pcdp_console()
with calls to early_ioremap/early_iounmap which can be called during
early boot.
This patch was tested on an x86_64 prototype system which uses the
HCDP/PCDP table for early console setup.
Signed-off-by: Greg Pearson <greg.pearson@hp.com>
Acked-by: Khalid Aziz <khalid.aziz@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 572d8b3945a31bee7c40d21556803e4807fd9141 upstream.
An fs-thaw ioctl causes deadlock with a chcp or mkcp -s command:
chcp D ffff88013870f3d0 0 1325 1324 0x00000004
...
Call Trace:
nilfs_transaction_begin+0x11c/0x1a0 [nilfs2]
wake_up_bit+0x20/0x20
copy_from_user+0x18/0x30 [nilfs2]
nilfs_ioctl_change_cpmode+0x7d/0xcf [nilfs2]
nilfs_ioctl+0x252/0x61a [nilfs2]
do_page_fault+0x311/0x34c
get_unmapped_area+0x132/0x14e
do_vfs_ioctl+0x44b/0x490
__set_task_blocked+0x5a/0x61
vm_mmap_pgoff+0x76/0x87
__set_current_blocked+0x30/0x4a
sys_ioctl+0x4b/0x6f
system_call_fastpath+0x16/0x1b
thaw D ffff88013870d890 0 1352 1351 0x00000004
...
Call Trace:
rwsem_down_failed_common+0xdb/0x10f
call_rwsem_down_write_failed+0x13/0x20
down_write+0x25/0x27
thaw_super+0x13/0x9e
do_vfs_ioctl+0x1f5/0x490
vm_mmap_pgoff+0x76/0x87
sys_ioctl+0x4b/0x6f
filp_close+0x64/0x6c
system_call_fastpath+0x16/0x1b
where the thaw ioctl deadlocked at thaw_super() when called while chcp was
waiting at nilfs_transaction_begin() called from
nilfs_ioctl_change_cpmode(). This deadlock is 100% reproducible.
This is because nilfs_ioctl_change_cpmode() first locks sb->s_umount in
read mode and then waits for unfreezing in nilfs_transaction_begin(),
whereas thaw_super() locks sb->s_umount in write mode. The locking of
sb->s_umount here was intended to make snapshot mounts and the downgrade
of snapshots to checkpoints exclusive.
This fixes the deadlock issue by replacing the sb->s_umount usage in
nilfs_ioctl_change_cpmode() with a dedicated mutex which protects snapshot
mounts.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit caea33da898e4e14f0ba58173e3b7689981d2c0b upstream.
Without this patch kernel will panic on LockD start, because lockd_up() checks
lockd_up_net() result for negative value.
From my pow it's better to return negative value from rpcbind routines instead
of replacing all such checks like in lockd_up().
Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a119365586b0130dfea06457f584953e0ff6481d upstream.
The following build error occured during a ia64 build with
swap-over-NFS patches applied.
net/core/sock.c:274:36: error: initializer element is not constant
net/core/sock.c:274:36: error: (near initialization for 'memalloc_socks')
net/core/sock.c:274:36: error: initializer element is not constant
This is identical to a parisc build error. Fengguang Wu, Mel Gorman
and James Bottomley did all the legwork to track the root cause of
the problem. This fix and entire commit log is shamelessly copied
from them with one extra detail to change a dubious runtime use of
ATOMIC_INIT() to atomic_set() in drivers/char/mspec.c
Dave Anglin says:
> Here is the line in sock.i:
>
> struct static_key memalloc_socks = ((struct static_key) { .enabled =
> ((atomic_t) { (0) }) });
The above line contains two compound literals. It also uses a designated
initializer to initialize the field enabled. A compound literal is not a
constant expression.
The location of the above statement isn't fully clear, but if a compound
literal occurs outside the body of a function, the initializer list must
consist of constant expressions.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 141168c36cdee3ff23d9c7700b0edc47cb65479f and
commit 3f806e50981825fa56a7f1938f24c0680816be45 upstream.
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space. However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files. The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:
text data bss dec hex filename
4737168 506459 972040 6215667 5ed7f3 vmlinux.o.before
4737444 506459 972040 6215943 5ed907 vmlinux.o.after
for a difference of 276 bytes for an example UP config.
If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 6f7b0a2a5c0fb03be7c25bd1745baa50582348ef upstream.
If uaddr == uaddr2, then we have broken the rule of only requeueing
from a non-pi futex to a pi futex with this call. If we attempt this,
as the trinity test suite manages to do, we miss early wakeups as
q.key is equal to key2 (because they are the same uaddr). We will then
attempt to dereference the pi_mutex (which would exist had the futex_q
been properly requeued to a pi futex) and trigger a NULL pointer
dereference.
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/ad82bfe7f7d130247fbe2b5b4275654807774227.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f27071cb7fe3e1d37a9dbe6c0dfc5395cd40fa43 upstream.
The WARN_ON in futex_wait_requeue_pi() for a NULL q.pi_state was testing
the address (&q.pi_state) of the pointer instead of the value
(q.pi_state) of the pointer. Correct it accordingly.
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1c85d97f6e5f79ec389a4ead3e367363c74bd09a.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit b6070a8d9853eda010a549fa9a09eb8d7269b929 upstream.
If fixup_pi_state_owner() faults, pi_mutex may be NULL. Test
for pi_mutex != NULL before testing the owner against current
and possibly unlocking it.
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Link: http://lkml.kernel.org/r/dc59890338fc413606f04e5c5b131530734dae3d.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c663600584a596b5e66258cc10716fb781a5c2c9 upstream.
Booting a 3.2, 3.3, or 3.4-rc4 kernel on an Atari using the
`nfeth' ethernet device triggers a WARN_ONCE() in generic irq
handling code on the first irq for that device:
WARNING: at kernel/irq/handle.c:146 handle_irq_event_percpu+0x134/0x142()
irq 3 handler nfeth_interrupt+0x0/0x194 enabled interrupts
Modules linked in:
Call Trace: [<000299b2>] warn_slowpath_common+0x48/0x6a
[<000299c0>] warn_slowpath_common+0x56/0x6a
[<00029a4c>] warn_slowpath_fmt+0x2a/0x32
[<0005b34c>] handle_irq_event_percpu+0x134/0x142
[<0005b34c>] handle_irq_event_percpu+0x134/0x142
[<0000a584>] nfeth_interrupt+0x0/0x194
[<001ba0a8>] schedule_preempt_disabled+0x0/0xc
[<0005b37a>] handle_irq_event+0x20/0x2c
[<0005add4>] generic_handle_irq+0x2c/0x3a
[<00002ab6>] do_IRQ+0x20/0x32
[<0000289e>] auto_irqhandler_fixup+0x4/0x6
[<00003144>] cpu_idle+0x22/0x2e
[<001b8a78>] printk+0x0/0x18
[<0024d112>] start_kernel+0x37a/0x386
[<0003021d>] __do_proc_dointvec+0xb1/0x366
[<0003021d>] __do_proc_dointvec+0xb1/0x366
[<0024c31e>] _sinittext+0x31e/0x9c0
After invoking the irq's handler the kernel sees !irqs_disabled()
and concludes that the handler erroneously enabled interrupts.
However, debugging shows that !irqs_disabled() is true even before
the handler is invoked, which indicates a problem in the platform
code rather than the specific driver.
The warning does not occur in 3.1 or older kernels.
It turns out that the ALLOWINT definition for Atari is incorrect.
The Atari definition of ALLOWINT is ~0x400, the stated purpose of
that is to avoid taking HSYNC interrupts. irqs_disabled() returns
true if the 3-bit ipl & 4 is non-zero. The nfeth interrupt runs at
ipl 3 (it's autovector 3), but 3 & 4 is zero so irqs_disabled() is
false, and the warning above is generated.
When interrupts are explicitly disabled, ipl is set to 7. When they
are enabled, ipl is masked with ALLOWINT. On Atari this will result
in ipl = 3, which blocks interrupts at ipl 3 and below. So how come
nfeth interrupts at ipl 3 are received at all? That's because ipl
is reset to 2 by Atari-specific code in default_idle(), again with
the stated purpose of blocking HSYNC interrupts. This discrepancy
means that ipl 3 can remain blocked for longer than intended.
Both default_idle() and falcon_hblhandler() identify HSYNC with
ipl 2, and the "Atari ST/.../F030 Hardware Register Listing" agrees,
but ALLOWINT is defined as if HSYNC was ipl 3.
[As an experiment I modified default_idle() to reset ipl to 3, and
as expected that resulted in all nfeth interrupts being blocked.]
The fix is simple: define ALLOWINT as ~0x500 instead. This makes
arch_local_irq_enable() consistent with default_idle(), and prevents
the !irqs_disabled() problems for ipl 3 interrupts.
Tested on Atari running in an Aranym VM.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Michael Schmitz <schmitzmic@googlemail.com>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 9e2760d18b3cf179534bbc27692c84879c61b97c upstream.
User space access must always go through uaccess accessors, since on
classic m68k user space and kernel space are completely separate.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Tested-by: Thorsten Glaser <tg@debian.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
commit b8edf3e5522735c8ce78b81845f7a1a2d4a08626 upstream.
Otherwise if someone tries to use all four channels on AIF1 with the
device in master mode we won't be able to clock out all the data.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
commit 9d40e5582c9c4cfb6977ba2a0ca9c2ed82c56f21 upstream.
Required for reliable power up from cold.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bc733d495267a23ef8660220d696c6e549ce30b3 upstream.
The irq field of struct snd_mpu401 is supposed to be initialized to -1.
Since it's set to zero as of now, a probing error before the irq
installation results in a kernel warning "Trying to free already-free
IRQ 0".
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=44821
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit aff252a848ce21b431ba822de3dab9c4c94571cb upstream.
uac_clock_source_is_valid() uses the control selector value to access
the bmControls bitmap of the clock source unit. This is wrong, as
control selector values start from 1, while the bitmap uses all
available bits.
In other words, "Clock Validity Control" is stored in D3..2, not D5..4
of the clock selector unit's bmControls.
Signed-off-by: Daniel Mack <zonque@gmail.com>
Reported-by: Andreas Koch <andreas@akdesigninc.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f96a4216e85050c0a9d41a41ecb0ae9d8e39b509 upstream.
The default 10 microsecond delay for the controller to come out of
halt in dbgp_ehci_startup is too short, so increase it to 1 millisecond.
This is based on emperical testing on various USB debug ports on
modern machines such as a Lenovo X220i and an Ivybridge development
platform that needed to wait ~450-950 microseconds.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commits a117dacde0288f3ec60b6e5bcedae8fa37ee0dfc
and 8bbb181308bc348e02bfdbebdedd4e4ec9d452ce ]
The tun module leaks up to 36 bytes of memory by not fully initializing
a structure located on the stack that gets copied to user memory by the
TUNGETIFF and SIOCGIFHWADDR ioctl()s.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 59ea33a68a9083ac98515e4861c00e71efdc49a1 ]
Back in 2006, commit 1a2449a87b ("[I/OAT]: TCP recv offload to I/OAT")
added support for receive offloading to IOAT dma engine if available.
The code in tcp_rcv_established() tries to perform early DMA copy if
applicable. It however does so without checking whether the userspace
task is actually expecting the data in the buffer.
This is not a problem under normal circumstances, but there is a corner
case where this doesn't work -- and that's when MSG_TRUNC flag to
recvmsg() is used.
If the IOAT dma engine is not used, the code properly checks whether
there is a valid ucopy.task and the socket is owned by userspace, but
misses the check in the dmaengine case.
This problem can be observed in real trivially -- for example 'tbench' is a
good reproducer, as it makes a heavy use of MSG_TRUNC. On systems utilizing
IOAT, you will soon find tbench waiting indefinitely in sk_wait_data(), as they
have been already early-copied in tcp_rcv_established() using dma engine.
This patch introduces the same check we are performing in the simple
iovec copy case to the IOAT case as well. It fixes the indefinite
recvmsg(MSG_TRUNC) hangs.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit b1beb681cba5358f62e6187340660ade226a5fcc ]
When device flags are set using rtnetlink, IFF_PROMISC and IFF_ALLMULTI
flags are handled specially. Function dev_change_flags sets IFF_PROMISC and
IFF_ALLMULTI bits in dev->gflags according to the passed value but
do_setlink passes a result of rtnl_dev_combine_flags which takes those bits
from dev->flags.
This can be easily trigerred by doing:
tcpdump -i eth0 &
ip l s up eth0
ip sets IFF_UP flag in ifi_flags and ifi_change, which is combined with
IFF_PROMISC by rtnl_dev_combine_flags, causing __dev_change_flags to set
IFF_PROMISC in gflags.
Reported-by: Max Matveev <makc@redhat.com>
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e4c7f259c5be99dcfc3d98f913590663b0305bf8 ]
The problem is that we call this with a spin lock held. The call tree
is:
kaweth_start_xmit() holds kaweth->device_lock.
-> kaweth_async_set_rx_mode()
-> kaweth_control()
-> kaweth_internal_control_msg()
The kaweth_internal_control_msg() function is only called from
kaweth_control() which used GFP_ATOMIC for its allocations.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 42493570100b91ef663c4c6f0c0fdab238f9d3c2 ]
TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int. But
patch "tcp: Add TCP_USER_TIMEOUT socket option"(dca43c75) didn't check the negative
values. If a user assign -1 to it, the socket will set successfully and wait
for 4294967295 miliseconds. This patch add a negative value check to avoid
this issue.
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 8b72ff6484fe303e01498b58621810a114f3cf09 ]
gcc really should warn about these !
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c66b9b7d365444b433307ebb18734757cb668a02 ]
Reported-by: <rucsoftsec@gmail.com>
Resolves-bug: http://bugzilla.kernel.org/show_bug?44441
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 89d7ae34cdda4195809a5a987f697a517a2a3177 ]
As reported by Alan Cox, and verified by Lin Ming, when a user
attempts to add a CIPSO option to a socket using the CIPSO_V4_TAG_LOCAL
tag the kernel dies a terrible death when it attempts to follow a NULL
pointer (the skb argument to cipso_v4_validate() is NULL when called via
the setsockopt() syscall).
This patch fixes this by first checking to ensure that the skb is
non-NULL before using it to find the incoming network interface. In
the unlikely case where the skb is NULL and the user attempts to add
a CIPSO option with the _TAG_LOCAL tag we return an error as this is
not something we want to allow.
A simple reproducer, kindly supplied by Lin Ming, although you must
have the CIPSO DOI #3 configure on the system first or you will be
caught early in cipso_v4_validate():
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <string.h>
struct local_tag {
char type;
char length;
char info[4];
};
struct cipso {
char type;
char length;
char doi[4];
struct local_tag local;
};
int main(int argc, char **argv)
{
int sockfd;
struct cipso cipso = {
.type = IPOPT_CIPSO,
.length = sizeof(struct cipso),
.local = {
.type = 128,
.length = sizeof(struct local_tag),
},
};
memset(cipso.doi, 0, 4);
cipso.doi[3] = 3;
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
#define SOL_IP 0
setsockopt(sockfd, SOL_IP, IP_OPTIONS,
&cipso, sizeof(struct cipso));
return 0;
}
CC: Lin Ming <mlin@ss.pku.edu.cn>
Reported-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Paul Moore <pmoore@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 96f80d123eff05c3cd4701463786b87952a6c3ac ]
unregister_netdevice_notifier() must be called before
unregister_pernet_subsys() to avoid accessing already freed
pernet memory. This fixes the following oops when doing rmmod:
Call Trace:
[<ffffffffa0f802bd>] caif_device_notify+0x4d/0x5a0 [caif]
[<ffffffff81552ba9>] unregister_netdevice_notifier+0xb9/0x100
[<ffffffffa0f86dcc>] caif_device_exit+0x1c/0x250 [caif]
[<ffffffff810e7734>] sys_delete_module+0x1a4/0x300
[<ffffffff810da82d>] ? trace_hardirqs_on_caller+0x15d/0x1e0
[<ffffffff813517de>] ? trace_hardirqs_on_thunk+0x3a/0x3
[<ffffffff81696bad>] system_call_fastpath+0x1a/0x1f
RIP
[<ffffffffa0f7f561>] caif_get+0x51/0xb0 [caif]
Signed-off-by: Sjur Brændeland <sjur.brandeland@stericsson.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 2eebc1e188e9e45886ee00662519849339884d6d ]
A few days ago Dave Jones reported this oops:
[22766.294255] general protection fault: 0000 [#1] PREEMPT SMP
[22766.295376] CPU 0
[22766.295384] Modules linked in:
[22766.387137] ffffffffa169f292 6b6b6b6b6b6b6b6b ffff880147c03a90
ffff880147c03a74
[22766.387135] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 00000000000
[22766.387136] Process trinity-watchdo (pid: 10896, threadinfo ffff88013e7d2000,
[22766.387137] Stack:
[22766.387140] ffff880147c03a10
[22766.387140] ffffffffa169f2b6
[22766.387140] ffff88013ed95728
[22766.387143] 0000000000000002
[22766.387143] 0000000000000000
[22766.387143] ffff880003fad062
[22766.387144] ffff88013c120000
[22766.387144]
[22766.387145] Call Trace:
[22766.387145] <IRQ>
[22766.387150] [<ffffffffa169f292>] ? __sctp_lookup_association+0x62/0xd0
[sctp]
[22766.387154] [<ffffffffa169f2b6>] __sctp_lookup_association+0x86/0xd0 [sctp]
[22766.387157] [<ffffffffa169f597>] sctp_rcv+0x207/0xbb0 [sctp]
[22766.387161] [<ffffffff810d4da8>] ? trace_hardirqs_off_caller+0x28/0xd0
[22766.387163] [<ffffffff815827e3>] ? nf_hook_slow+0x133/0x210
[22766.387166] [<ffffffff815902fc>] ? ip_local_deliver_finish+0x4c/0x4c0
[22766.387168] [<ffffffff8159043d>] ip_local_deliver_finish+0x18d/0x4c0
[22766.387169] [<ffffffff815902fc>] ? ip_local_deliver_finish+0x4c/0x4c0
[22766.387171] [<ffffffff81590a07>] ip_local_deliver+0x47/0x80
[22766.387172] [<ffffffff8158fd80>] ip_rcv_finish+0x150/0x680
[22766.387174] [<ffffffff81590c54>] ip_rcv+0x214/0x320
[22766.387176] [<ffffffff81558c07>] __netif_receive_skb+0x7b7/0x910
[22766.387178] [<ffffffff8155856c>] ? __netif_receive_skb+0x11c/0x910
[22766.387180] [<ffffffff810d423e>] ? put_lock_stats.isra.25+0xe/0x40
[22766.387182] [<ffffffff81558f83>] netif_receive_skb+0x23/0x1f0
[22766.387183] [<ffffffff815596a9>] ? dev_gro_receive+0x139/0x440
[22766.387185] [<ffffffff81559280>] napi_skb_finish+0x70/0xa0
[22766.387187] [<ffffffff81559cb5>] napi_gro_receive+0xf5/0x130
[22766.387218] [<ffffffffa01c4679>] e1000_receive_skb+0x59/0x70 [e1000e]
[22766.387242] [<ffffffffa01c5aab>] e1000_clean_rx_irq+0x28b/0x460 [e1000e]
[22766.387266] [<ffffffffa01c9c18>] e1000e_poll+0x78/0x430 [e1000e]
[22766.387268] [<ffffffff81559fea>] net_rx_action+0x1aa/0x3d0
[22766.387270] [<ffffffff810a495f>] ? account_system_vtime+0x10f/0x130
[22766.387273] [<ffffffff810734d0>] __do_softirq+0xe0/0x420
[22766.387275] [<ffffffff8169826c>] call_softirq+0x1c/0x30
[22766.387278] [<ffffffff8101db15>] do_softirq+0xd5/0x110
[22766.387279] [<ffffffff81073bc5>] irq_exit+0xd5/0xe0
[22766.387281] [<ffffffff81698b03>] do_IRQ+0x63/0xd0
[22766.387283] [<ffffffff8168ee2f>] common_interrupt+0x6f/0x6f
[22766.387283] <EOI>
[22766.387284]
[22766.387285] [<ffffffff8168eed9>] ? retint_swapgs+0x13/0x1b
[22766.387285] Code: c0 90 5d c3 66 0f 1f 44 00 00 4c 89 c8 5d c3 0f 1f 00 55 48
89 e5 48 83
ec 20 48 89 5d e8 4c 89 65 f0 4c 89 6d f8 66 66 66 66 90 <0f> b7 87 98 00 00 00
48 89 fb
49 89 f5 66 c1 c0 08 66 39 46 02
[22766.387307]
[22766.387307] RIP
[22766.387311] [<ffffffffa168a2c9>] sctp_assoc_is_match+0x19/0x90 [sctp]
[22766.387311] RSP <ffff880147c039b0>
[22766.387142] ffffffffa16ab120
[22766.599537] ---[ end trace 3f6dae82e37b17f5 ]---
[22766.601221] Kernel panic - not syncing: Fatal exception in interrupt
It appears from his analysis and some staring at the code that this is likely
occuring because an association is getting freed while still on the
sctp_assoc_hashtable. As a result, we get a gpf when traversing the hashtable
while a freed node corrupts part of the list.
Nominally I would think that an mibalanced refcount was responsible for this,
but I can't seem to find any obvious imbalance. What I did note however was
that the two places where we create an association using
sctp_primitive_ASSOCIATE (__sctp_connect and sctp_sendmsg), have failure paths
which free a newly created association after calling sctp_primitive_ASSOCIATE.
sctp_primitive_ASSOCIATE brings us into the sctp_sf_do_prm_asoc path, which
issues a SCTP_CMD_NEW_ASOC side effect, which in turn adds a new association to
the aforementioned hash table. the sctp command interpreter that process side
effects has not way to unwind previously processed commands, so freeing the
association from the __sctp_connect or sctp_sendmsg error path would lead to a
freed association remaining on this hash table.
I've fixed this but modifying sctp_[un]hash_established to use hlist_del_init,
which allows us to proerly use hlist_unhashed to check if the node is on a
hashlist safely during a delete. That in turn alows us to safely call
sctp_unhash_established in the __sctp_connect and sctp_sendmsg error paths
before freeing them, regardles of what the associations state is on the hash
list.
I noted, while I was doing this, that the __sctp_unhash_endpoint was using
hlist_unhsashed in a simmilar fashion, but never nullified any removed nodes
pointers to make that function work properly, so I fixed that up in a simmilar
fashion.
I attempted to test this using a virtual guest running the SCTP_RR test from
netperf in a loop while running the trinity fuzzer, both in a loop. I wasn't
able to recreate the problem prior to this fix, nor was I able to trigger the
failure after (neither of which I suppose is suprising). Given the trace above
however, I think its likely that this is what we hit.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Reported-by: davej@redhat.com
CC: davej@redhat.com
CC: "David S. Miller" <davem@davemloft.net>
CC: Vlad Yasevich <vyasevich@gmail.com>
CC: Sridhar Samudrala <sri@us.ibm.com>
CC: linux-sctp@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|