aboutsummaryrefslogtreecommitdiffstats
path: root/mm/rmap.c
Commit message (Collapse)AuthorAgeFilesLines
* mm: fix XFS oops due to dirty pages without buffers on s390Jan Kara2012-11-051-5/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ef5d437f71afdf4afdbab99213add99f4b1318fd upstream. On s390 any write to a page (even from kernel itself) sets architecture specific page dirty bit. Thus when a page is written to via buffered write, HW dirty bit gets set and when we later map and unmap the page, page_remove_rmap() finds the dirty bit and calls set_page_dirty(). Dirtying of a page which shouldn't be dirty can cause all sorts of problems to filesystems. The bug we observed in practice is that buffers from the page get freed, so when the page gets later marked as dirty and writeback writes it, XFS crashes due to an assertion BUG_ON(!PagePrivate(page)) in page_buffers() called from xfs_count_page_state(). Similar problem can also happen when zero_user_segment() call from xfs_vm_writepage() (or block_write_full_page() for that matter) set the hardware dirty bit during writeback, later buffers get freed, and then page unmapped. Fix the issue by ignoring s390 HW dirty bit for page cache pages of mappings with mapping_cap_account_dirty(). This is safe because for such mappings when a page gets marked as writeable in PTE it is also marked dirty in do_wp_page() or do_page_fault(). When the dirty bit is cleared by clear_page_dirty_for_io(), the page gets writeprotected in page_mkclean(). So pagecache page is writeable if and only if it is dirty. Thanks to Hugh Dickins for pointing out mapping has to have mapping_cap_account_dirty() for things to work and proposing a cleaned up variant of the patch. The patch has survived about two hours of running fsx-linux on tmpfs while heavily swapping and several days of running on out build machines where the original problem was triggered. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* mm/memory-failure.c: fix spinlock vs mutex orderPeter Zijlstra2011-06-271-3/+2
| | | | | | | | | | We cannot take a mutex while holding a spinlock, so flip the order and fix the locking documentation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: avoid anon_vma_chain allocation under anon_vma lockLinus Torvalds2011-06-171-8/+12
| | | | | | | | | | | | | | | | | | | | | | | Hugh Dickins points out that lockdep (correctly) spots a potential deadlock on the anon_vma lock, because we now do a GFP_KERNEL allocation of anon_vma_chain while doing anon_vma_clone(). The problem is that page reclaim will want to take the anon_vma lock of any anonymous pages that it will try to reclaim. So re-organize the code in anon_vma_clone() slightly: first do just a GFP_NOWAIT allocation, which will usually work fine. But if that fails, let's just drop the lock and re-do the allocation, now with GFP_KERNEL. End result: not only do we avoid the locking problem, this also ends up getting better concurrency in case the allocation does need to block. Tim Chen reports that with all these anon_vma locking tweaks, we're now almost back up to the spinlock performance. Reported-and-tested-by: Hugh Dickins <hughd@google.com> Tested-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: avoid repeated anon_vma lock/unlock sequences in unlink_anon_vmas()Peter Zijlstra2011-06-171-21/+28
| | | | | | | | | | | | | | | | | | | | | This matches the anon_vma_clone() case, and uses the same lock helper functions. Because of the need to potentially release the anon_vma's, it's a bit more complex, though. We traverse the 'vma->anon_vma_chain' in two phases: the first loop gets the anon_vma lock (with the helper function that only takes the lock once for the whole loop), and removes any entries that don't need any more processing. The second phase just traverses the remaining list entries (without holding the anon_vma lock), and does any actual freeing of the anon_vma's that is required. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Tested-by: Hugh Dickins <hughd@google.com> Tested-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: avoid repeated anon_vma lock/unlock sequences in anon_vma_clone()Linus Torvalds2011-06-171-3/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | In anon_vma_clone() we traverse the vma->anon_vma_chain of the source vma, locking the anon_vma for each entry. But they are all going to have the same root entry, which means that we're locking and unlocking the same lock over and over again. Which is expensive in locked operations, but can get _really_ expensive when that root entry sees any kind of lock contention. In fact, Tim Chen reports a big performance regression due to this: when we switched to use a mutex instead of a spinlock, the contention case gets much worse. So to alleviate this all, this commit creates a small helper function (lock_anon_vma_root()) that can be used to take the lock just once rather than taking and releasing it over and over again. We still have the same "take the lock and release" it behavior in the exit path (in unlink_anon_vmas()), but that one is a bit harder to fix since we're actually freeing the anon_vma entries as we go, and that will touch the lock too. Reported-and-tested-by: Tim Chen <tim.c.chen@linux.intel.com> Tested-by: Hugh Dickins <hughd@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, rmap: Add yet more comments to page_get_anon_vma/page_lock_anon_vmaPeter Zijlstra2011-05-291-1/+6
| | | | | | | | Inspired by an analysis from Hugh on why again all this doesn't explode in our face. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix page_lock_anon_vma leaving mutex lockedHugh Dickins2011-05-281-5/+8
| | | | | | | | | | | | | | | | | | | | On one machine I've been getting hangs, a page fault's anon_vma_prepare() waiting in anon_vma_lock(), other processes waiting for that page's lock. This is a replay of last year's f18194275c39 "mm: fix hang on anon_vma->root->lock". The new page_lock_anon_vma() places too much faith in its refcount: when it has acquired the mutex_trylock(), it's possible that a racing task in anon_vma_alloc() has just reallocated the struct anon_vma, set refcount to 1, and is about to reset its anon_vma->root. Fix this by saving anon_vma->root, and relying on the usual page_mapped() check instead of a refcount check: if page is still mapped, the anon_vma is still ours; if page is not still mapped, we're no longer interested. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix kernel BUG at mm/rmap.c:1017!Hugh Dickins2011-05-281-2/+2
| | | | | | | | | | | | | | | | | I've hit the "address >= vma->vm_end" check in do_page_add_anon_rmap() just once. The stack showed khugepaged allocation trying to compact pages: the call to page_add_anon_rmap() coming from remove_migration_pte(). That path holds anon_vma lock, but does not hold mmap_sem: it can therefore race with a split_vma(), and in commit 5f70b962ccc2 "mmap: avoid unnecessary anon_vma lock" we just took away the anon_vma lock protection when adjusting vma->vm_end. I don't think that particular BUG_ON ever caught anything interesting, so better replace it by a comment, than reinstate the anon_vma locking. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: optimize page_lock_anon_vma() fast-pathPeter Zijlstra2011-05-251-4/+82
| | | | | | | | | | | | | | | | | | | | | | | Optimize the page_lock_anon_vma() fast path to be one atomic op, instead of two. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: convert anon_vma->lock to a mutexPeter Zijlstra2011-05-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | Straightforward conversion of anon_vma->lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: use refcounts for page_lock_anon_vma()Peter Zijlstra2011-05-251-15/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | Convert page_lock_anon_vma() over to use refcounts. This is done to prepare for the conversion of anon_vma from spinlock to mutex. Sadly this inceases the cost of page_lock_anon_vma() from one to two atomics, a follow up patch addresses this, lets keep that simple for now. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: improve page_lock_anon_vma() commentPeter Zijlstra2011-05-251-2/+16
| | | | | | | | | | | | | | | | | | | | | | | A slightly more verbose comment to go along with the trickery in page_lock_anon_vma(). Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: revert page_lock_anon_vma() lock annotationPeter Zijlstra2011-05-251-3/+1
| | | | | | | | | | | | | | | | | | | | | | | Its beyond ugly and gets in the way. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Namhyung Kim <namhyung@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: Convert i_mmap_lock to a mutexPeter Zijlstra2011-05-251-14/+14
| | | | | | | | | | | | | | | | | | | | | | Straightforward conversion of i_mmap_lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [S390] merge page_test_dirty and page_clear_dirtyMartin Schwidefsky2011-05-231-7/+4
| | | | | | | | | | | | | | | | The page_clear_dirty primitive always sets the default storage key which resets the access control bits and the fetch protection bit. That will surprise a KVM guest that sets non-zero access control bits or the fetch protection bit. Merge page_test_dirty and page_clear_dirty back to a single function and only clear the dirty bit from the storage key. In addition move the function page_test_and_clear_dirty and page_test_and_clear_young to page.h where they belong. This requires to change the parameter from a struct page * to a page frame number. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* fs: move i_wb_list out from under inode_lockDave Chinner2011-03-241-2/+2
| | | | | | | | | | | Protect the inode writeback list with a new global lock inode_wb_list_lock and use it to protect the list manipulations and traversals. This lock replaces the inode_lock as the inodes on the list can be validity checked while holding the inode->i_lock and hence the inode_lock is no longer needed to protect the list. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* fs: protect inode->i_state with inode->i_lockDave Chinner2011-03-241-0/+1
| | | | | | | | | | | | | | | | | | | | | | Protect inode state transitions and validity checks with the inode->i_lock. This enables us to make inode state transitions independently of the inode_lock and is the first step to peeling away the inode_lock from the code. This requires that __iget() is done atomically with i_state checks during list traversals so that we don't race with another thread marking the inode I_FREEING between the state check and grabbing the reference. Also remove the unlock_new_inode() memory barrier optimisation required to avoid taking the inode_lock when clearing I_NEW. Simplify the code by simply taking the inode->i_lock around the state change and wakeup. Because the wakeup is no longer tricky, remove the wake_up_inode() function and open code the wakeup where necessary. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* mm: simplify anon_vma refcountsPeter Zijlstra2011-03-221-48/+28
| | | | | | | | | | | | | | | | | | This patch changes the anon_vma refcount to be 0 when the object is free. It does this by adding 1 ref to being in use in the anon_vma structure (iow. the anon_vma->head list is not empty). This allows a simpler release scheme without having to check both the refcount and the list as well as avoids taking a ref for each entry on the list. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move anon_vma ref out from under CONFIG_fooPeter Zijlstra2011-03-221-8/+6
| | | | | | | | | | | | | We need the anon_vma refcount unconditionally to simplify the anon_vma lifetime rules. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: rename drop_anon_vma() to put_anon_vma()Peter Zijlstra2011-03-221-2/+2
| | | | | | | | | | | | The normal code pattern used in the kernel is: get/put. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: fix page_referenced to modify mapcount/vm_flags only if page is foundAndrea Arcangeli2011-03-131-19/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When vmscan.c calls page_referenced(), if an anon page was created before a process forked, rmap will search for it in both of the processes, even though one of them might have since broken COW. If the child process mlocks the vma where the COWed page belongs to, page_referenced() running on the page mapped by the parent would lead to *vm_flags getting VM_LOCKED set erroneously (leading to the references on the parent page being ignored and evicting the parent page too early). *mapcount would also be decremented by page_referenced_one even if the page wasn't found by page_check_address. This also lets pmdp_clear_flush_young_notify() go ahead on a pmd_trans_splitting() pmd. We hold the page_table_lock so __split_huge_page_map() must wait the pmdp_clear_flush_young_notify() to complete before it can modify the pmd. The pmd is also still mapped in userland so the young bit may materialize through a tlb miss before split_huge_page_map runs. This will provide a more accurate page_referenced() behavior during split_huge_page(). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Michel Lespinasse <walken@google.com> Reviewed-by: Michel Lespinasse <walken@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel<riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: create extensible page stat update routinesGreg Thelen2011-01-131-2/+2
| | | | | | | | | | | | | | | | | | | | | Replace usage of the mem_cgroup_update_file_mapped() memcg statistic update routine with two new routines: * mem_cgroup_inc_page_stat() * mem_cgroup_dec_page_stat() As before, only the file_mapped statistic is managed. However, these more general interfaces allow for new statistics to be more easily added. New statistics are added with memcg dirty page accounting. Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Andrea Righi <arighi@develer.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: fix memory-failure hugetlbfs vs THP collisionAndrea Arcangeli2011-01-131-1/+1
| | | | | | | | | | | | | | | | | | | | hugetlbfs was changed to allow memory failure to migrate the hugetlbfs pages and that broke THP as split_huge_page was then called on hugetlbfs pages too. compound_head/order was also run unsafe on THP pages that can be splitted at any time. All compound_head() invocations in memory-failure.c that are run on pages that aren't pinned and that can be freed and reused from under us (while compound_head is running) are buggy because compound_head can return a dangling pointer, but I'm not fixing this as this is a generic memory-failure bug not specific to THP but it applies to hugetlbfs too, so I can fix it later after THP is merged upstream. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: transparent hugepage vmstatAndrea Arcangeli2011-01-131-4/+16
| | | | | | | | | Add hugepage stat information to /proc/vmstat and /proc/meminfo. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: split_huge_page anon_vma ordering dependencyAndrea Arcangeli2011-01-131-0/+4
| | | | | | | | | | | This documents how split_huge_page is safe vs new vma inserctions into the anon_vma that may have already released the anon_vma->lock but not established pmds yet when split_huge_page starts. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: transparent hugepage coreAndrea Arcangeli2011-01-131-24/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: split_huge_page pagingAndrea Arcangeli2011-01-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | Paging logic that splits the page before it is unmapped and added to swap to ensure backwards compatibility with the legacy swap code. Eventually swap should natively pageout the hugepages to increase performance and decrease seeking and fragmentation of swap space. swapoff can just skip over huge pmd as they cannot be part of swap yet. In add_to_swap be careful to split the page only if we got a valid swap entry so we don't split hugepages with a full swap. In theory we could split pages before isolating them during the lru scan, but for khugepaged to be safe, I'm relying on either mmap_sem write mode, or PG_lock taken, so split_huge_page has to run either with mmap_sem read/write mode or PG_lock taken. Calling it from isolate_lru_page would make locking more complicated, in addition to that split_huge_page would deadlock if called by __isolate_lru_page because it has to take the lru lock to add the tail pages. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/rmap.c: fix commentFigo.zhang2010-12-271-1/+1
| | | | | | | | clean up comment. Signed-off-by: Figo.zhang <figo1802@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* rmap: make anon_vma_chain_free() staticNamhyung Kim2010-10-261-1/+1
| | | | | | | | | | Make anon_vma_chain_free() static. It is called only in rmap.c and the corresponding alloc function is already static. Signed-off-by: Namhyung Kim <namhyung@gmail.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* rmap: wrap page_check_address() using __cond_lock()Namhyung Kim2010-10-261-1/+1
| | | | | | | | | | | | | | | The page_check_address() conditionally grabs *@ptlp in case of returning non-NULL. Rename and wrap it using __cond_lock() removes following warnings from sparse: mm/rmap.c:472:9: warning: context imbalance in 'page_mapped_in_vma' - unexpected unlock mm/rmap.c:524:9: warning: context imbalance in 'page_referenced_one' - unexpected unlock mm/rmap.c:706:9: warning: context imbalance in 'page_mkclean_one' - unexpected unlock mm/rmap.c:1066:9: warning: context imbalance in 'try_to_unmap_one' - unexpected unlock Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* rmap: annotate lock context change on page_[un]lock_anon_vma()Namhyung Kim2010-10-261-1/+3
| | | | | | | | | | The page_lock_anon_vma() conditionally grabs RCU and anon_vma lock but page_unlock_anon_vma() releases them unconditionally. This leads sparse to complain about context imbalance. Annotate them. Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'hwpoison' of ↵Linus Torvalds2010-10-261-17/+8
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (22 commits) Add _addr_lsb field to ia64 siginfo Fix migration.c compilation on s390 HWPOISON: Remove retry loop for try_to_unmap HWPOISON: Turn addr_valid from bitfield into char HWPOISON: Disable DEBUG by default HWPOISON: Convert pr_debugs to pr_info HWPOISON: Improve comments in memory-failure.c x86: HWPOISON: Report correct address granuality for huge hwpoison faults Encode huge page size for VM_FAULT_HWPOISON errors Fix build error with !CONFIG_MIGRATION hugepage: move is_hugepage_on_freelist inside ifdef to avoid warning Clean up __page_set_anon_rmap HWPOISON, hugetlb: fix unpoison for hugepage HWPOISON, hugetlb: soft offlining for hugepage HWPOSION, hugetlb: recover from free hugepage error when !MF_COUNT_INCREASED hugetlb: move refcounting in hugepage allocation inside hugetlb_lock HWPOISON, hugetlb: add free check to dequeue_hwpoison_huge_page() hugetlb: hugepage migration core hugetlb: redefine hugepage copy functions hugetlb: add allocate function for hugepage migration ...
| * Clean up __page_set_anon_rmapAndi Kleen2010-10-081-17/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Linus asked for a cleanup of __page_set_anon_rmap to make it look more like the cleaner huge pages version. Factor out the duplicated PageAnon check into a single check at the beginning of the function. Remove obsolete comments and rewrite them into standard English. No functional changes. Signed-off-by: Andi Kleen <ak@linux.intel.com>
* | [S390] add support for nonquiescing sskeMartin Schwidefsky2010-10-251-2/+2
|/ | | | | | | | Improve performance of the sske operation by using the nonquiescing variant if the affected page has no mappings established. On machines with no support for the new sske variant the mask bit will be ignored. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* ksm: fix page_address_in_vma anon_vma oopsHugh Dickins2010-10-041-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | 2.6.36-rc1 commit 21d0d443cdc1658a8c1484fdcece4803f0f96d0e "rmap: resurrect page_address_in_vma anon_vma check" was right to resurrect that check; but now that it's comparing anon_vma->roots instead of just anon_vmas, there's a danger of oopsing on a NULL anon_vma. In most cases no NULL anon_vma ever gets here; but it turns out that occasionally KSM, when enabled on a forked or forking process, will itself call page_address_in_vma() on a "half-KSM" page left over from an earlier failed attempt to merge - whose page_anon_vma() is NULL. It's my bug that those should be getting here at all: I thought they were already dealt with, this oops proves me wrong, I'll fix it in the next release - such pages are effectively pinned until their process exits, since rmap cannot find their ptes (though swapoff can). For now just work around it by making page_address_in_vma() safe (and add a comment on why that check is wanted anyway). A similar check in __page_check_anon_rmap() is safe because do_page_add_anon_rmap() already excluded KSM pages. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb, rmap: add BUG_ON(!PageLocked) in hugetlb_add_anon_rmap()Naoya Horiguchi2010-09-231-0/+2
| | | | | | | | | | Confirming page lock is held in hugetlb_add_anon_rmap() may be useful to detect possible future problems. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb, rmap: always use anon_vma root pointerNaoya Horiguchi2010-09-231-6/+7
| | | | | | | | | | | | | | | | | This patch applies Andrea's fix given by the following patch into hugepage rmapping code: commit 288468c334e98aacbb7e2fb8bde6bc1adcd55e05 Author: Andrea Arcangeli <aarcange@redhat.com> Date: Mon Aug 9 17:19:09 2010 -0700 This patch uses anon_vma->root and avoids unnecessary overwriting when anon_vma is already set up. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: fix hang on anon_vma->root->lockHugh Dickins2010-08-281-3/+16
| | | | | | | | | | | | | | | | | | | After several hours, kbuild tests hang with anon_vma_prepare() spinning on a newly allocated anon_vma's lock - on a box with CONFIG_TREE_PREEMPT_RCU=y (which makes this very much more likely, but it could happen without). The ever-subtle page_lock_anon_vma() now needs a further twist: since anon_vma_prepare() and anon_vma_fork() are liable to change the ->root of a reused anon_vma structure at any moment, page_lock_anon_vma() needs to check page_mapped() again before succeeding, otherwise page_unlock_anon_vma() might address a different root->lock. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'hwpoison' of ↵Linus Torvalds2010-08-121-0/+59
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: hugetlb: add missing unlock in avoidcopy path in hugetlb_cow() hwpoison: rename CONFIG HWPOISON, hugetlb: support hwpoison injection for hugepage HWPOISON, hugetlb: detect hwpoison in hugetlb code HWPOISON, hugetlb: isolate corrupted hugepage HWPOISON, hugetlb: maintain mce_bad_pages in handling hugepage error HWPOISON, hugetlb: set/clear PG_hwpoison bits on hugepage HWPOISON, hugetlb: enable error handling path for hugepage hugetlb, rmap: add reverse mapping for hugepage hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h Fix up trivial conflicts in mm/memory-failure.c
| * hwpoison: rename CONFIGNaoya Horiguchi2010-08-111-2/+2
| | | | | | | | | | | | | | | | | | CONFIG_HUGETLBFS controls hugetlbfs interface code. OTOH, CONFIG_HUGETLB_PAGE controls hugepage management code. So we should use CONFIG_HUGETLB_PAGE here. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
| * hugetlb, rmap: add reverse mapping for hugepageNaoya Horiguchi2010-08-111-0/+59
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* | rmap: add exclusive page to private anon_vma on swapinRik van Riel2010-08-091-1/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On swapin it is fairly common for a page to be owned exclusively by one process. In that case we want to add the page to the anon_vma of that process's VMA, instead of to the root anon_vma. This will reduce the amount of rmap searching that the swapout code needs to do. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | rmap: add anon_vma bug checksAndrea Arcangeli2010-08-091-0/+3
| | | | | | | | | | | | | | | | | | | | Verify the refcounting doesn't go wrong, and resurrect the check in __page_check_anon_rmap as in old anon-vma code. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | rmap: resurrect page_address_in_vma anon_vma checkAndrea Arcangeli2010-08-091-3/+4
| | | | | | | | | | | | | | | | | | | | With root anon-vma it's trivial to keep doing the usual check as in old-anon-vma code. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | rmap: always use anon_vma root pointerAndrea Arcangeli2010-08-091-6/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Always use anon_vma->root pointer instead of anon_vma_chain.prev. Also optimize the map-paths, if a mapping is already established no need to overwrite it with root anon-vma list, we can keep the more finegrined anon-vma and skip the overwrite: see the PageAnon check in !exclusive case. This is also the optimization that hidden the ksm bug as this tends to make ksm_might_need_to_copy skip the copy, but only the proper fix to ksm_might_need_to_copy guarantees not triggering the ksm bug unless ksm is in use. this is an optimization only... [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> [kamezawa.hiroyu@jp.fujitsu.com: fix false positive BUG_ON in __page_set_anon_rmap] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | rmap: always add new vmas at the endAndrea Arcangeli2010-08-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Make sure to always add new VMAs at the end of the list. This is important so rmap_walk does not miss a VMA that was created during the rmap_walk. The old code got this right most of the time due to luck, but was buggy when anon_vma_prepare reused a mergeable anon_vma. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: extend KSM refcounts to the anon_vma rootRik van Riel2010-08-091-1/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KSM reference counts can cause an anon_vma to exist after the processe it belongs to have already exited. Because the anon_vma lock now lives in the root anon_vma, we need to ensure that the root anon_vma stays around until after all the "child" anon_vmas have been freed. The obvious way to do this is to have a "child" anon_vma take a reference to the root in anon_vma_fork. When the anon_vma is freed at munmap or process exit, we drop the refcount in anon_vma_unlink and possibly free the root anon_vma. The KSM anon_vma reference count function also needs to be modified to deal with the possibility of freeing 2 levels of anon_vma. The easiest way to do this is to break out the KSM magic and make it generic. When compiling without CONFIG_KSM, this code is compiled out. Signed-off-by: Rik van Riel <riel@redhat.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Tested-by: Dave Young <hidave.darkstar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: track the root (oldest) anon_vmaRik van Riel2010-08-091-2/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Track the root (oldest) anon_vma in each anon_vma tree. Because we only take the lock on the root anon_vma, we cannot use the lock on higher-up anon_vmas to lock anything. This makes it impossible to do an indirect lookup of the root anon_vma, since the data structures could go away from under us. However, a direct pointer is safe because the root anon_vma is always the last one that gets freed on munmap or exit, by virtue of the same_vma list order and unlink_anon_vmas walking the list forward. [akpm@linux-foundation.org: fix typo] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: change direct call of spin_lock(anon_vma->lock) to inline functionRik van Riel2010-08-091-10/+10
|/ | | | | | | | | | | | | | | | | | | | | Subsitute a direct call of spin_lock(anon_vma->lock) with an inline function doing exactly the same. This makes it easier to do the substitution to the root anon_vma lock in a following patch. We will deal with the handful of special locks (nested, dec_and_lock, etc) separately. Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: avoid race between shift_arg_pages() and rmap_walk() during ↵Mel Gorman2010-05-251-1/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | migration by not migrating temporary stacks Page migration requires rmap to be able to find all ptes mapping a page at all times, otherwise the migration entry can be instantiated, but it is possible to leave one behind if the second rmap_walk fails to find the page. If this page is later faulted, migration_entry_to_page() will call BUG because the page is locked indicating the page was migrated by the migration PTE not cleaned up. For example kernel BUG at include/linux/swapops.h:105! invalid opcode: 0000 [#1] PREEMPT SMP ... Call Trace: [<ffffffff810e951a>] handle_mm_fault+0x3f8/0x76a [<ffffffff8130c7a2>] do_page_fault+0x44a/0x46e [<ffffffff813099b5>] page_fault+0x25/0x30 [<ffffffff8114de33>] load_elf_binary+0x152a/0x192b [<ffffffff8111329b>] search_binary_handler+0x173/0x313 [<ffffffff81114896>] do_execve+0x219/0x30a [<ffffffff8100a5c6>] sys_execve+0x43/0x5e [<ffffffff8100320a>] stub_execve+0x6a/0xc0 RIP [<ffffffff811094ff>] migration_entry_wait+0xc1/0x129 There is a race between shift_arg_pages and migration that triggers this bug. A temporary stack is setup during exec and later moved. If migration moves a page in the temporary stack and the VMA is then removed before migration completes, the migration PTE may not be found leading to a BUG when the stack is faulted. This patch causes pages within the temporary stack during exec to be skipped by migration. It does this by marking the VMA covering the temporary stack with an otherwise impossible combination of VMA flags. These flags are cleared when the temporary stack is moved to its final location. [kamezawa.hiroyu@jp.fujitsu.com: idea for having migration skip temporary stacks] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>