aboutsummaryrefslogtreecommitdiffstats
path: root/mm
Commit message (Collapse)AuthorAgeFilesLines
* update version codeWolfgang Wiedmeyer2015-10-231-10/+7
|
* initial merge with 3.2.72Wolfgang Wiedmeyer2015-10-231-0/+488
|\
| * mm: avoid setting up anonymous pages into file mappingKirill A. Shutemov2015-08-121-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6b7339f4c31ad69c8e9c0b2859276e22cf72176d upstream. Reading page fault handler code I've noticed that under right circumstances kernel would map anonymous pages into file mappings: if the VMA doesn't have vm_ops->fault() and the VMA wasn't fully populated on ->mmap(), kernel would handle page fault to not populated pte with do_anonymous_page(). Let's change page fault handler to use do_anonymous_page() only on anonymous VMA (->vm_ops == NULL) and make sure that the VMA is not shared. For file mappings without vm_ops->fault() or shred VMA without vm_ops, page fault on pte_none() entry would lead to SIGBUS. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: kmemleak: allow safe memory scanning during kmemleak disablingCatalin Marinas2015-08-121-1/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit c5f3b1a51a591c18c8b33983908e7fdda6ae417e upstream. The kmemleak scanning thread can run for minutes. Callbacks like kmemleak_free() are allowed during this time, the race being taken care of by the object->lock spinlock. Such lock also prevents a memory block from being freed or unmapped while it is being scanned by blocking the kmemleak_free() -> ... -> __delete_object() function until the lock is released in scan_object(). When a kmemleak error occurs (e.g. it fails to allocate its metadata), kmemleak_enabled is set and __delete_object() is no longer called on freed objects. If kmemleak_scan is running at the same time, kmemleak_free() no longer waits for the object scanning to complete, allowing the corresponding memory block to be freed or unmapped (in the case of vfree()). This leads to kmemleak_scan potentially triggering a page fault. This patch separates the kmemleak_free() enabling/disabling from the overall kmemleak_enabled nob so that we can defer the disabling of the object freeing tracking until the scanning thread completed. The kmemleak_free_part() is deliberately ignored by this patch since this is only called during boot before the scanning thread started. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org> Tested-by: Vignesh Radhakrishnan <vigneshr@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Drop changes to kmemleak_free_percpu()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * fs: Fix S_NOSEC handlingJan Kara2015-08-121-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 2426f3910069ed47c0cc58559a6d088af7920201 upstream. file_remove_suid() could mistakenly set S_NOSEC inode bit when root was modifying the file. As a result following writes to the file by ordinary user would avoid clearing suid or sgid bits. Fix the bug by checking actual mode bits before setting S_NOSEC. Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * slub: refactoring unfreeze_partials()Joonsoo Kim2015-08-071-31/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 43d77867a4f333de4e4189114c480dd365133c09 upstream. Current implementation of unfreeze_partials() is so complicated, but benefit from it is insignificant. In addition many code in do {} while loop have a bad influence to a fail rate of cmpxchg_double_slab. Under current implementation which test status of cpu partial slab and acquire list_lock in do {} while loop, we don't need to acquire a list_lock and gain a little benefit when front of the cpu partial slab is to be discarded, but this is a rare case. In case that add_partial is performed and cmpxchg_double_slab is failed, remove_partial should be called case by case. I think that these are disadvantages of current implementation, so I do refactoring unfreeze_partials(). Minimizing code in do {} while loop introduce a reduced fail rate of cmpxchg_double_slab. Below is output of 'slabinfo -r kmalloc-256' when './perf stat -r 33 hackbench 50 process 4000 > /dev/null' is done. ** before ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 182685 Unlocked Cmpxchg Double redos 0 ** after ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 177995 Unlocked Cmpxchg Double redos 1 We can see cmpxchg_double_slab fail rate is improved slightly. Bolow is output of './perf stat -r 30 hackbench 50 process 4000 > /dev/null'. ** before ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 108517.190463 task-clock # 7.926 CPUs utilized ( +- 0.24% ) 2,919,550 context-switches # 0.027 M/sec ( +- 3.07% ) 100,774 CPU-migrations # 0.929 K/sec ( +- 4.72% ) 124,201 page-faults # 0.001 M/sec ( +- 0.15% ) 401,500,234,387 cycles # 3.700 GHz ( +- 0.24% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,576,913,354 instructions # 0.62 insns per cycle ( +- 0.13% ) 45,934,956,860 branches # 423.297 M/sec ( +- 0.14% ) 188,219,787 branch-misses # 0.41% of all branches ( +- 0.56% ) 13.691837307 seconds time elapsed ( +- 0.24% ) ** after ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 107784.479767 task-clock # 7.928 CPUs utilized ( +- 0.22% ) 2,834,781 context-switches # 0.026 M/sec ( +- 2.33% ) 93,083 CPU-migrations # 0.864 K/sec ( +- 3.45% ) 123,967 page-faults # 0.001 M/sec ( +- 0.15% ) 398,781,421,836 cycles # 3.700 GHz ( +- 0.22% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,189,160,419 instructions # 0.63 insns per cycle ( +- 0.09% ) 45,855,370,128 branches # 425.436 M/sec ( +- 0.10% ) 169,881,248 branch-misses # 0.37% of all branches ( +- 0.43% ) 13.596272341 seconds time elapsed ( +- 0.22% ) No regression is found, but rather we can see slightly better result. Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Pekka Enberg <penberg@kernel.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Cc: Zefan Li <lizefan@huawei.com>
| * writeback: use |1 instead of +1 to protect against div by zeroTejun Heo2015-08-071-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 464d1387acb94dc43ba772b35242345e3d2ead1b upstream. mm/page-writeback.c has several places where 1 is added to the divisor to prevent division by zero exceptions; however, if the original divisor is equivalent to -1, adding 1 leads to division by zero. There are three places where +1 is used for this purpose - one in pos_ratio_polynom() and two in bdi_position_ratio(). The second one in bdi_position_ratio() actually triggered div-by-zero oops on a machine running a 3.10 kernel. The divisor is x_intercept - bdi_setpoint + 1 == span + 1 span is confirmed to be (u32)-1. It isn't clear how it ended up that but it could be from write bandwidth calculation underflow fixed by c72efb658f7c ("writeback: fix possible underflow in write bandwidth calculation"). At any rate, +1 isn't a proper protection against div-by-zero. This patch converts all +1 protections to |1. Note that bdi_update_dirty_ratelimit() was already using |1 before this patch. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: fix anon_vma->degree underflow in anon_vma endless growing preventionLeon Yu2015-05-092-3/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 3fe89b3e2a7bbf3e97657104b9b33a9d81b950b3 upstream. I have constantly stumbled upon "kernel BUG at mm/rmap.c:399!" after upgrading to 3.19 and had no luck with 4.0-rc1 neither. So, after looking into new logic introduced by commit 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy"), I found chances are that unlink_anon_vmas() is called without incrementing dst->anon_vma->degree in anon_vma_clone() due to allocation failure. If dst->anon_vma is not NULL in error path, its degree will be incorrectly decremented in unlink_anon_vmas() and eventually underflow when exiting as a result of another call to unlink_anon_vmas(). That's how "kernel BUG at mm/rmap.c:399!" is triggered for me. This patch fixes the underflow by dropping dst->anon_vma when allocation fails. It's safe to do so regardless of original value of dst->anon_vma because dst->anon_vma doesn't have valid meaning if anon_vma_clone() fails. Besides, callers don't care dst->anon_vma in such case neither. Also suggested by Michal Hocko, we can clean up vma_adjust() a bit as anon_vma_clone() now does the work. [akpm@linux-foundation.org: tweak comment] Fixes: 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy") Signed-off-by: Leon Yu <chianglungyu@gmail.com> Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * writeback: fix possible underflow in write bandwidth calculationTejun Heo2015-05-091-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit c72efb658f7c8b27ca3d0efb5cfd5ded9fcac89e upstream. From 1ebf33901ecc75d9496862dceb1ef0377980587c Mon Sep 17 00:00:00 2001 From: Tejun Heo <tj@kernel.org> Date: Mon, 23 Mar 2015 00:08:19 -0400 2f800fbd777b ("writeback: fix dirtied pages accounting on redirty") introduced account_page_redirty() which reverts stat updates for a redirtied page, making BDI_DIRTIED no longer monotonically increasing. bdi_update_write_bandwidth() uses the delta in BDI_DIRTIED as the basis for bandwidth calculation. While unlikely, since the above patch, the newer value may be lower than the recorded past value and underflow the bandwidth calculation leading to a wild result. Fix it by subtracing min of the old and new values when calculating delta. AFAIK, there hasn't been any report of it happening but the resulting erratic behavior would be non-critical and temporary, so it's possible that the issue is happening without being reported. The risk of the fix is very low, so tagged for -stable. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Fixes: 2f800fbd777b ("writeback: fix dirtied pages accounting on redirty") Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * writeback: add missing INITIAL_JIFFIES init in global_update_bandwidth()Tejun Heo2015-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7d70e15480c0450d2bfafaad338a32e884fc215e upstream. global_update_bandwidth() uses static variable update_time as the timestamp for the last update but forgets to initialize it to INITIALIZE_JIFFIES. This means that global_dirty_limit will be 5 mins into the future on 32bit and some large amount jiffies into the past on 64bit. This isn't critical as the only effect is that global_dirty_limit won't be updated for the first 5 mins after booting on 32bit machines, especially given the auxiliary nature of global_dirty_limit's role - protecting against global dirty threshold's sudden dips; however, it does lead to unintended suboptimal behavior. Fix it. Fixes: c42843f2f0bb ("writeback: introduce smoothed global dirty limit") Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/memory.c: actually remap enough memoryGrazvydas Ignotas2015-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 9cb12d7b4ccaa976f97ce0c5fd0f1b6a83bc2a75 upstream. For whatever reason, generic_access_phys() only remaps one page, but actually allows to access arbitrary size. It's quite easy to trigger large reads, like printing out large structure with gdb, which leads to a crash. Fix it by remapping correct size. Fixes: 28b2ee20c7cb ("access_process_vm device memory infrastructure") Signed-off-by: Grazvydas Ignotas <notasas@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/nommu.c: fix arithmetic overflow in __vm_enough_memory()Roman Gushchin2015-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8138a67a5557ffea3a21dfd6f037842d4e748513 upstream. I noticed that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d0981fcc ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: there is no 'reserved' variable] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/mmap.c: fix arithmetic overflow in __vm_enough_memory()Roman Gushchin2015-05-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 5703b087dc8eaf47bfb399d6cf512d471beff405 upstream. I noticed, that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d0981fcc ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. [akpm@linux-foundation.org: use min_t] Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: there is no 'reserved' variable] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/hugetlb: add migration entry check in __unmap_hugepage_rangeNaoya Horiguchi2015-05-091-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 9fbc1f635fd0bd28cb32550211bf095753ac637a upstream. If __unmap_hugepage_range() tries to unmap the address range over which hugepage migration is on the way, we get the wrong page because pte_page() doesn't work for migration entries. This patch simply clears the pte for migration entries as we do for hwpoison entries. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context and comment, as we're checking after the PTE has been cleared] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/hugetlb: add migration/hwpoisoned entry check in hugetlb_change_protectionNaoya Horiguchi2015-05-091-1/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a8bda28d87c38c6aa93de28ba5d30cc18e865a11 upstream. There is a race condition between hugepage migration and change_protection(), where hugetlb_change_protection() doesn't care about migration entries and wrongly overwrites them. That causes unexpected results like kernel crash. HWPoison entries also can cause the same problem. This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this function to do proper actions. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - We don't have split page table locks, so don't unlock inside the loop - We don't count pages here] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm/hugetlb: fix getting refcount 0 page in hugetlb_fault()Naoya Horiguchi2015-05-091-15/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 0f792cf949a0be506c2aa8bfac0605746b146dda upstream. When running the test which causes the race as shown in the previous patch, we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault(). This race happens when pte turns into migration entry just after the first check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false. To fix this, we need to check pte_present() again after huge_ptep_get(). This patch also reorders taking ptl and doing pte_page(), because pte_page() should be done in ptl. Due to this reordering, we need use trylock_page() in page != pagecache_page case to respect locking order. Fixes: 66aebce747ea ("hugetlb: fix race condition in hugetlb_fault()") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Error label is named 'out_page_table_lock' not 'out_ptl'] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: pagewalk: call pte_hole() for VM_PFNMAP during walk_page_rangeShiraz Hashim2015-03-061-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 23aaed6659df9adfabe9c583e67a36b54e21df46 upstream. walk_page_range() silently skips vma having VM_PFNMAP set, which leads to undesirable behaviour at client end (who called walk_page_range). Userspace applications get the wrong data, so the effect is like just confusing users (if the applications just display the data) or sometimes killing the processes (if the applications do something with misunderstanding virtual addresses due to the wrong data.) For example for pagemap_read, when no callbacks are called against VM_PFNMAP vma, pagemap_read may prepare pagemap data for next virtual address range at wrong index. Eventually userspace may get wrong pagemap data for a task. Corresponding to a VM_PFNMAP marked vma region, kernel may report mappings from subsequent vma regions. User space in turn may account more pages (than really are) to the task. In my case I was using procmem, procrack (Android utility) which uses pagemap interface to account RSS pages of a task. Due to this bug it was giving a wrong picture for vmas (with VM_PFNMAP set). Fixes: a9ff785e4437 ("mm/pagewalk.c: walk_page_range should avoid VM_PFNMAP areas") Signed-off-by: Shiraz Hashim <shashim@codeaurora.org> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * vm: make stack guard page errors return VM_FAULT_SIGSEGV rather than SIGBUSLinus Torvalds2015-02-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 9c145c56d0c8a0b62e48c8d71e055ad0fb2012ba upstream. The stack guard page error case has long incorrectly caused a SIGBUS rather than a SIGSEGV, but nobody actually noticed until commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page") because that error case was never actually triggered in any normal situations. Now that we actually report the error, people noticed the wrong signal that resulted. So far, only the test suite of libsigsegv seems to have actually cared, but there are real applications that use libsigsegv, so let's not wait for any of those to break. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * vm: add VM_FAULT_SIGSEGV handling supportLinus Torvalds2015-02-202-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 33692f27597fcab536d7cbbcc8f52905133e4aa7 upstream. The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust filenames, context - Drop arc, metag, nios2 and lustre changes - For sh, patch both 32-bit and 64-bit implementations to use goto bad_area - For s390, pass int_code and trans_exc_code as arguments to do_no_context() and do_sigsegv()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: fix corner case in anon_vma endless growing preventionKonstantin Khlebnikov2015-02-201-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b800c91a0517071156e772d4fb329ad33590da62 upstream. Fix for BUG_ON(anon_vma->degree) splashes in unlink_anon_vmas() ("kernel BUG at mm/rmap.c:399!") caused by commit 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy") Anon_vma_clone() is usually called for a copy of source vma in destination argument. If source vma has anon_vma it should be already in dst->anon_vma. NULL in dst->anon_vma is used as a sign that it's called from anon_vma_fork(). In this case anon_vma_clone() finds anon_vma for reusing. Vma_adjust() calls it differently and this breaks anon_vma reusing logic: anon_vma_clone() links vma to old anon_vma and updates degree counters but vma_adjust() overrides vma->anon_vma right after that. As a result final unlink_anon_vmas() decrements degree for wrong anon_vma. This patch assigns ->anon_vma before calling anon_vma_clone(). Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-and-tested-by: Chris Clayton <chris2553@googlemail.com> Reported-and-tested-by: Oded Gabbay <oded.gabbay@amd.com> Reported-and-tested-by: Chih-Wei Huang <cwhuang@android-x86.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Daniel Forrest <dan.forrest@ssec.wisc.edu> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: vma_adjust() didn't use a variable to propagate the error code from anon_vma_clone(); change that at the same time] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: Don't count the stack guard page towards RLIMIT_STACKLinus Torvalds2015-02-201-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 690eac53daff34169a4d74fc7bfbd388c4896abb upstream. Commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page") made sure that we return the error properly for stack growth conditions. It also theorized that counting the guard page towards the stack limit might break something, but also said "Let's see if anybody notices". Somebody did notice. Apparently android-x86 sets the stack limit very close to the limit indeed, and including the guard page in the rlimit check causes the android 'zygote' process problems. So this adds the (fairly trivial) code to make the stack rlimit check be against the actual real stack size, rather than the size of the vma that includes the guard page. Reported-and-tested-by: Chih-Wei Huang <cwhuang@android-x86.org> Cc: Jay Foad <jay.foad@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: protect set_page_dirty() from ongoing truncationJohannes Weiner2015-02-202-41/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 2d6d7f98284648c5ed113fe22a132148950b140f upstream. Tejun, while reviewing the code, spotted the following race condition between the dirtying and truncation of a page: __set_page_dirty_nobuffers() __delete_from_page_cache() if (TestSetPageDirty(page)) page->mapping = NULL if (PageDirty()) dec_zone_page_state(page, NR_FILE_DIRTY); dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); if (page->mapping) account_page_dirtied(page) __inc_zone_page_state(page, NR_FILE_DIRTY); __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); which results in an imbalance of NR_FILE_DIRTY and BDI_RECLAIMABLE. Dirtiers usually lock out truncation, either by holding the page lock directly, or in case of zap_pte_range(), by pinning the mapcount with the page table lock held. The notable exception to this rule, though, is do_wp_page(), for which this race exists. However, do_wp_page() already waits for a locked page to unlock before setting the dirty bit, in order to prevent a race where clear_page_dirty() misses the page bit in the presence of dirty ptes. Upgrade that wait to a fully locked set_page_dirty() to also cover the situation explained above. Afterwards, the code in set_page_dirty() dealing with a truncation race is no longer needed. Remove it. Reported-by: Tejun Heo <tj@kernel.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Use VM_BUG_ON() rather than VM_BUG_ON_PAGE()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: remove unused arg of set_page_dirty_balance()Miklos Szeredi2015-02-202-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ed6d7c8e578331cad594ee70d60e2e146b5dce7b upstream. There's only one caller of set_page_dirty_balance() and that will call it with page_mkwrite == 0. The page_mkwrite argument was unused since commit b827e496c893 "mm: close page_mkwrite races". Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: prevent endless growth of anon_vma hierarchyKonstantin Khlebnikov2015-02-201-1/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7a3ef208e662f4b63d43a23f61a64a129c525bbc upstream. Constantly forking task causes unlimited grow of anon_vma chain. Each next child allocates new level of anon_vmas and links vma to all previous levels because pages might be inherited from any level. This patch adds heuristic which decides to reuse existing anon_vma instead of forking new one. It adds counter anon_vma->degree which counts linked vmas and directly descending anon_vmas and reuses anon_vma if counter is lower than two. As a result each anon_vma has either vma or at least two descending anon_vmas. In such trees half of nodes are leafs with alive vmas, thus count of anon_vmas is no more than two times bigger than count of vmas. This heuristic reuses anon_vmas as few as possible because each reuse adds false aliasing among vmas and rmap walker ought to scan more ptes when it searches where page is might be mapped. Link: http://lkml.kernel.org/r/20120816024610.GA5350@evergreen.ssec.wisc.edu Fixes: 5beb49305251 ("mm: change anon_vma linking to fix multi-process server scalability issue") [akpm@linux-foundation.org: fix typo, per Rik] Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-by: Daniel Forrest <dan.forrest@ssec.wisc.edu> Tested-by: Michal Hocko <mhocko@suse.cz> Tested-by: Jerome Marchand <jmarchan@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: propagate error from stack expansion even for guard pageLinus Torvalds2015-02-201-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit fee7e49d45149fba60156f5b59014f764d3e3728 upstream. Jay Foad reports that the address sanitizer test (asan) sometimes gets confused by a stack pointer that ends up being outside the stack vma that is reported by /proc/maps. This happens due to an interaction between RLIMIT_STACK and the guard page: when we do the guard page check, we ignore the potential error from the stack expansion, which effectively results in a missing guard page, since the expected stack expansion won't have been done. And since /proc/maps explicitly ignores the guard page (commit d7824370e263: "mm: fix up some user-visible effects of the stack guard page"), the stack pointer ends up being outside the reported stack area. This is the minimal patch: it just propagates the error. It also effectively makes the guard page part of the stack limit, which in turn measn that the actual real stack is one page less than the stack limit. Let's see if anybody notices. We could teach acct_stack_growth() to allow an extra page for a grow-up/grow-down stack in the rlimit test, but I don't want to add more complexity if it isn't needed. Reported-and-tested-by: Jay Foad <jay.foad@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: fix swapoff hang after page migration and forkHugh Dickins2015-01-011-13/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 2022b4d18a491a578218ce7a4eca8666db895a73 upstream. I've been seeing swapoff hangs in recent testing: it's cycling around trying unsuccessfully to find an mm for some remaining pages of swap. I have been exercising swap and page migration more heavily recently, and now notice a long-standing error in copy_one_pte(): it's trying to add dst_mm to swapoff's mmlist when it finds a swap entry, but is doing so even when it's a migration entry or an hwpoison entry. Which wouldn't matter much, except it adds dst_mm next to src_mm, assuming src_mm is already on the mmlist: which may not be so. Then if pages are later swapped out from dst_mm, swapoff won't be able to find where to replace them. There's already a !non_swap_entry() test for stats: move that up before the swap_duplicate() and the addition to mmlist. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Kelley Nielsen <kelleynnn@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: Remove false WARN_ON from pagecache_isize_extended()Jan Kara2014-12-141-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f55fefd1a5a339b1bd08c120b93312d6eb64a9fb upstream. The WARN_ON checking whether i_mutex is held in pagecache_isize_extended() was wrong because some filesystems (e.g. XFS) use different locks for serialization of truncates / writes. So just remove the check. Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm, thp: fix collapsing of hugepages on madviseDavid Rientjes2014-12-142-9/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6d50e60cd2edb5a57154db5a6f64eef5aa59b751 upstream. If an anonymous mapping is not allowed to fault thp memory and then madvise(MADV_HUGEPAGE) is used after fault, khugepaged will never collapse this memory into thp memory. This occurs because the madvise(2) handler for thp, hugepage_madvise(), clears VM_NOHUGEPAGE on the stack and it isn't stored in vma->vm_flags until the final action of madvise_behavior(). This causes the khugepaged_enter_vma_merge() to be a no-op in hugepage_madvise() when the vma had previously had VM_NOHUGEPAGE set. Fix this by passing the correct vma flags to the khugepaged mm slot handler. There's no chance khugepaged can run on this vma until after madvise_behavior() returns since we hold mm->mmap_sem. It would be possible to clear VM_NOHUGEPAGE directly from vma->vm_flags in hugepage_advise(), but I didn't want to introduce special case behavior into madvise_behavior(). I think it's best to just let it always set vma->vm_flags itself. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Suleiman Souhlal <suleiman@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context, indentation] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * cgroup/kmemleak: add kmemleak_free() for cgroup deallocations.Wang Nan2014-12-141-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 401507d67d5c2854f5a88b3f93f64fc6f267bca5 upstream. Commit ff7ee93f4715 ("cgroup/kmemleak: Annotate alloc_page() for cgroup allocations") introduces kmemleak_alloc() for alloc_page_cgroup(), but corresponding kmemleak_free() is missing, which makes kmemleak be wrongly disabled after memory offlining. Log is pasted at the end of this commit message. This patch add kmemleak_free() into free_page_cgroup(). During page offlining, this patch removes corresponding entries in kmemleak rbtree. After that, the freed memory can be allocated again by other subsystems without killing kmemleak. bash # for x in 1 2 3 4; do echo offline > /sys/devices/system/memory/memory$x/state ; sleep 1; done ; dmesg | grep leak Offlined Pages 32768 kmemleak: Cannot insert 0xffff880016969000 into the object search tree (overlaps existing) CPU: 0 PID: 412 Comm: sleep Not tainted 3.17.0-rc5+ #86 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x46/0x58 create_object+0x266/0x2c0 kmemleak_alloc+0x26/0x50 kmem_cache_alloc+0xd3/0x160 __sigqueue_alloc+0x49/0xd0 __send_signal+0xcb/0x410 send_signal+0x45/0x90 __group_send_sig_info+0x13/0x20 do_notify_parent+0x1bb/0x260 do_exit+0x767/0xa40 do_group_exit+0x44/0xa0 SyS_exit_group+0x17/0x20 system_call_fastpath+0x16/0x1b kmemleak: Kernel memory leak detector disabled kmemleak: Object 0xffff880016900000 (size 524288): kmemleak: comm "swapper/0", pid 0, jiffies 4294667296 kmemleak: min_count = 0 kmemleak: count = 0 kmemleak: flags = 0x1 kmemleak: checksum = 0 kmemleak: backtrace: log_early+0x63/0x77 kmemleak_alloc+0x4b/0x50 init_section_page_cgroup+0x7f/0xf5 page_cgroup_init+0xc5/0xd0 start_kernel+0x333/0x408 x86_64_start_reservations+0x2a/0x2c x86_64_start_kernel+0xf5/0xfc Fixes: ff7ee93f4715 (cgroup/kmemleak: Annotate alloc_page() for cgroup allocations) Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * zap_pte_range: update addr when forcing flush after TLB batching faiureWill Deacon2014-12-141-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ce9ec37bddb633404a0c23e1acb181a264e7f7f2 upstream. When unmapping a range of pages in zap_pte_range, the page being unmapped is added to an mmu_gather_batch structure for asynchronous freeing. If we run out of space in the batch structure before the range has been completely unmapped, then we break out of the loop, force a TLB flush and free the pages that we have batched so far. If there are further pages to unmap, then we resume the loop where we left off. Unfortunately, we forget to update addr when we break out of the loop, which causes us to truncate the range being invalidated as the end address is exclusive. When we re-enter the loop at the same address, the page has already been freed and the pte_present test will fail, meaning that we do not reconsider the address for invalidation. This patch fixes the problem by incrementing addr by the PAGE_SIZE before breaking out of the loop on batch failure. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context; add braces] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * vfs: fix data corruption when blocksize < pagesize for mmaped dataJan Kara2014-12-141-1/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 90a8020278c1598fafd071736a0846b38510309c upstream. ->page_mkwrite() is used by filesystems to allocate blocks under a page which is becoming writeably mmapped in some process' address space. This allows a filesystem to return a page fault if there is not enough space available, user exceeds quota or similar problem happens, rather than silently discarding data later when writepage is called. However VFS fails to call ->page_mkwrite() in all the cases where filesystems need it when blocksize < pagesize. For example when blocksize = 1024, pagesize = 4096 the following is problematic: ftruncate(fd, 0); pwrite(fd, buf, 1024, 0); map = mmap(NULL, 1024, PROT_WRITE, MAP_SHARED, fd, 0); map[0] = 'a'; ----> page_mkwrite() for index 0 is called ftruncate(fd, 10000); /* or even pwrite(fd, buf, 1, 10000) */ mremap(map, 1024, 10000, 0); map[4095] = 'a'; ----> no page_mkwrite() called At the moment ->page_mkwrite() is called, filesystem can allocate only one block for the page because i_size == 1024. Otherwise it would create blocks beyond i_size which is generally undesirable. But later at ->writepage() time, we also need to store data at offset 4095 but we don't have block allocated for it. This patch introduces a helper function filesystems can use to have ->page_mkwrite() called at all the necessary moments. Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> [bwh: Backported to 3.2: - Adjust context - truncate_setsize() already has an oldsize variable] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: migrate: Close race between migration completion and mprotectMel Gorman2014-11-051-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d3cb8bf6081b8b7a2dabb1264fe968fd870fa595 upstream. A migration entry is marked as write if pte_write was true at the time the entry was created. The VMA protections are not double checked when migration entries are being removed as mprotect marks write-migration-entries as read. It means that potentially we take a spurious fault to mark PTEs write again but it's straight-forward. However, there is a race between write migrations being marked read and migrations finishing. This potentially allows a PTE to be write that should have been read. Close this race by double checking the VMA permissions using maybe_mkwrite when migration completes. [torvalds@linux-foundation.org: use maybe_mkwrite] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * shmem: fix nlink for rename overwrite directoryMiklos Szeredi2014-11-051-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b928095b0a7cff7fb9fcf4c706348ceb8ab2c295 upstream. If overwriting an empty directory with rename, then need to drop the extra nlink. Test prog: #include <stdio.h> #include <fcntl.h> #include <err.h> #include <sys/stat.h> int main(void) { const char *test_dir1 = "test-dir1"; const char *test_dir2 = "test-dir2"; int res; int fd; struct stat statbuf; res = mkdir(test_dir1, 0777); if (res == -1) err(1, "mkdir(\"%s\")", test_dir1); res = mkdir(test_dir2, 0777); if (res == -1) err(1, "mkdir(\"%s\")", test_dir2); fd = open(test_dir2, O_RDONLY); if (fd == -1) err(1, "open(\"%s\")", test_dir2); res = rename(test_dir1, test_dir2); if (res == -1) err(1, "rename(\"%s\", \"%s\")", test_dir1, test_dir2); res = fstat(fd, &statbuf); if (res == -1) err(1, "fstat(%i)", fd); if (statbuf.st_nlink != 0) { fprintf(stderr, "nlink is %lu, should be 0\n", statbuf.st_nlink); return 1; } return 0; } Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * percpu: free percpu allocation info for uniprocessor systemHonggang Li2014-11-051-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | commit 3189eddbcafcc4d827f7f19facbeddec4424eba8 upstream. Currently, only SMP system free the percpu allocation info. Uniprocessor system should free it too. For example, one x86 UML virtual machine with 256MB memory, UML kernel wastes one page memory. Signed-off-by: Honggang Li <enjoymindful@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * percpu: perform tlb flush after pcpu_map_pages() failureTejun Heo2014-11-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 849f5169097e1ba35b90ac9df76b5bb6f9c0aabd upstream. If pcpu_map_pages() fails midway, it unmaps the already mapped pages. Currently, it doesn't flush tlb after the partial unmapping. This may be okay in most cases as the established mapping hasn't been used at that point but it can go wrong and when it goes wrong it'd be extremely difficult to track down. Flush tlb after the partial unmapping. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * percpu: fix pcpu_alloc_pages() failure pathTejun Heo2014-11-051-6/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f0d279654dea22b7a6ad34b9334aee80cda62cde upstream. When pcpu_alloc_pages() fails midway, pcpu_free_pages() is invoked to free what has already been allocated. The invocation is across the whole requested range and pcpu_free_pages() will try to free all non-NULL pages; unfortunately, this is incorrect as pcpu_get_pages_and_bitmap(), unlike what its comment suggests, doesn't clear the pages array and thus the array may have entries from the previous invocations making the partial failure path free incorrect pages. Fix it by open-coding the partial freeing of the already allocated pages. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * slab/mempolicy: always use local policy from interrupt contextAndi Kleen2014-09-133-4/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit e7b691b085fda913830e5280ae6f724b2a63c824 upstream. slab_node() could access current->mempolicy from interrupt context. However there's a race condition during exit where the mempolicy is first freed and then the pointer zeroed. Using this from interrupts seems bogus anyways. The interrupt will interrupt a random process and therefore get a random mempolicy. Many times, this will be idle's, which noone can change. Just disable this here and always use local for slab from interrupts. I also cleaned up the callers of slab_node a bit which always passed the same argument. I believe the original mempolicy code did that in fact, so it's likely a regression. v2: send version with correct logic v3: simplify. fix typo. Reported-by: Arun Sharma <asharma@fb.com> Cc: penberg@kernel.org Cc: cl@linux.com Signed-off-by: Andi Kleen <ak@linux.intel.com> [tdmackey@twitter.com: Rework control flow based on feedback from cl@linux.com, fix logic, and cleanup current task_struct reference] Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: David Mackey <tdmackey@twitter.com> Signed-off-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm, thp: do not allow thp faults to avoid cpuset restrictionsDavid Rientjes2014-09-131-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b104a35d32025ca740539db2808aa3385d0f30eb upstream. The page allocator relies on __GFP_WAIT to determine if ALLOC_CPUSET should be set in allocflags. ALLOC_CPUSET controls if a page allocation should be restricted only to the set of allowed cpuset mems. Transparent hugepages clears __GFP_WAIT when defrag is disabled to prevent the fault path from using memory compaction or direct reclaim. Thus, it is unfairly able to allocate outside of its cpuset mems restriction as a side-effect. This patch ensures that ALLOC_CPUSET is only cleared when the gfp mask is truly GFP_ATOMIC by verifying it is also not a thp allocation. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Alex Thorlton <athorlton@sgi.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hedi Berriche <hedi@sgi.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: kmemleak: avoid false negatives on vmalloc'ed objectsCatalin Marinas2014-08-062-5/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7f88f88f83ed609650a01b18572e605ea50cd163 upstream. Commit 248ac0e1943a ("mm/vmalloc: remove guard page from between vmap blocks") had the side effect of making vmap_area.va_end member point to the next vmap_area.va_start. This was creating an artificial reference to vmalloc'ed objects and kmemleak was rarely reporting vmalloc() leaks. This patch marks the vmap_area containing pointers explicitly and reduces the min ref_count to 2 as vm_struct still contains a reference to the vmalloc'ed object. The kmemleak add_scan_area() function has been improved to allow a SIZE_MAX argument covering the rest of the object (for simpler calling sites). Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: hugetlb: fix copy_hugetlb_page_range()Naoya Horiguchi2014-08-061-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 0253d634e0803a8376a0d88efee0bf523d8673f9 upstream. Commit 4a705fef9862 ("hugetlb: fix copy_hugetlb_page_range() to handle migration/hwpoisoned entry") changed the order of huge_ptep_set_wrprotect() and huge_ptep_get(), which leads to breakage in some workloads like hugepage-backed heap allocation via libhugetlbfs. This patch fixes it. The test program for the problem is shown below: $ cat heap.c #include <unistd.h> #include <stdlib.h> #include <string.h> #define HPS 0x200000 int main() { int i; char *p = malloc(HPS); memset(p, '1', HPS); for (i = 0; i < 5; i++) { if (!fork()) { memset(p, '2', HPS); p = malloc(HPS); memset(p, '3', HPS); free(p); return 0; } } sleep(1); free(p); return 0; } $ export HUGETLB_MORECORE=yes ; export HUGETLB_NO_PREFAULT= ; hugectl --heap ./heap Fixes 4a705fef9862 ("hugetlb: fix copy_hugetlb_page_range() to handle migration/hwpoisoned entry"), so is applicable to -stable kernels which include it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Guillaume Morin <guillaume@morinfr.org> Suggested-by: Guillaume Morin <guillaume@morinfr.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * shmem: fix splicing from a hole while it's punchedHugh Dickins2014-08-061-9/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b1a366500bd537b50c3aad26dc7df083ec03a448 upstream. shmem_fault() is the actual culprit in trinity's hole-punch starvation, and the most significant cause of such problems: since a page faulted is one that then appears page_mapped(), needing unmap_mapping_range() and i_mmap_mutex to be unmapped again. But it is not the only way in which a page can be brought into a hole in the radix_tree while that hole is being punched; and Vlastimil's testing implies that if enough other processors are busy filling in the hole, then shmem_undo_range() can be kept from completing indefinitely. shmem_file_splice_read() is the main other user of SGP_CACHE, which can instantiate shmem pagecache pages in the read-only case (without holding i_mutex, so perhaps concurrently with a hole-punch). Probably it's silly not to use SGP_READ already (using the ZERO_PAGE for holes): which ought to be safe, but might bring surprises - not a change to be rushed. shmem_read_mapping_page_gfp() is an internal interface used by drivers/gpu/drm GEM (and next by uprobes): it should be okay. And shmem_file_read_iter() uses the SGP_DIRTY variant of SGP_CACHE, when called internally by the kernel (perhaps for a stacking filesystem, which might rely on holes to be reserved): it's unclear whether it could be provoked to keep hole-punch busy or not. We could apply the same umbrella as now used in shmem_fault() to shmem_file_splice_read() and the others; but it looks ugly, and use over a range raises questions - should it actually be per page? can these get starved themselves? The origin of this part of the problem is my v3.1 commit d0823576bf4b ("mm: pincer in truncate_inode_pages_range"), once it was duplicated into shmem.c. It seemed like a nice idea at the time, to ensure (barring RCU lookup fuzziness) that there's an instant when the entire hole is empty; but the indefinitely repeated scans to ensure that make it vulnerable. Revert that "enhancement" to hole-punch from shmem_undo_range(), but retain the unproblematic rescanning when it's truncating; add a couple of comments there. Remove the "indices[0] >= end" test: that is now handled satisfactorily by the inner loop, and mem_cgroup_uncharge_start()/end() are too light to be worth avoiding here. But if we do not always loop indefinitely, we do need to handle the case of swap swizzled back to page before shmem_free_swap() gets it: add a retry for that case, as suggested by Konstantin Khlebnikov; and for the case of page swizzled back to swap, as suggested by Johannes Weiner. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lukas Czerner <lczerner@redhat.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * shmem: fix faulting into a hole, not taking i_mutexHugh Dickins2014-08-061-20/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8e205f779d1443a94b5ae81aa359cb535dd3021e upstream. Commit f00cdc6df7d7 ("shmem: fix faulting into a hole while it's punched") was buggy: Sasha sent a lockdep report to remind us that grabbing i_mutex in the fault path is a no-no (write syscall may already hold i_mutex while faulting user buffer). We tried a completely different approach (see following patch) but that proved inadequate: good enough for a rational workload, but not good enough against trinity - which forks off so many mappings of the object that contention on i_mmap_mutex while hole-puncher holds i_mutex builds into serious starvation when concurrent faults force the puncher to fall back to single-page unmap_mapping_range() searches of the i_mmap tree. So return to the original umbrella approach, but keep away from i_mutex this time. We really don't want to bloat every shmem inode with a new mutex or completion, just to protect this unlikely case from trinity. So extend the original with wait_queue_head on stack at the hole-punch end, and wait_queue item on the stack at the fault end. This involves further use of i_lock to guard against the races: lockdep has been happy so far, and I see fs/inode.c:unlock_new_inode() holds i_lock around wake_up_bit(), which is comparable to what we do here. i_lock is more convenient, but we could switch to shmem's info->lock. This issue has been tagged with CVE-2014-4171, which will require commit f00cdc6df7d7 and this and the following patch to be backported: we suggest to 3.1+, though in fact the trinity forkbomb effect might go back as far as 2.6.16, when madvise(,,MADV_REMOVE) came in - or might not, since much has changed, with i_mmap_mutex a spinlock before 3.0. Anyone running trinity on 3.0 and earlier? I don't think we need care. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lukas Czerner <lczerner@redhat.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * shmem: fix faulting into a hole while it's punchedHugh Dickins2014-08-062-25/+91
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f00cdc6df7d7cfcabb5b740911e6788cb0802bdb upstream. Trinity finds that mmap access to a hole while it's punched from shmem can prevent the madvise(MADV_REMOVE) or fallocate(FALLOC_FL_PUNCH_HOLE) from completing, until the reader chooses to stop; with the puncher's hold on i_mutex locking out all other writers until it can complete. It appears that the tmpfs fault path is too light in comparison with its hole-punching path, lacking an i_data_sem to obstruct it; but we don't want to slow down the common case. Extend shmem_fallocate()'s existing range notification mechanism, so shmem_fault() can refrain from faulting pages into the hole while it's punched, waiting instead on i_mutex (when safe to sleep; or repeatedly faulting when not). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * cpuset,mempolicy: fix sleeping function called from invalid contextGu Zheng2014-08-061-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 391acf970d21219a2a5446282d3b20eace0c0d7a upstream. When runing with the kernel(3.15-rc7+), the follow bug occurs: [ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586 [ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python [ 9969.441175] INFO: lockdep is turned off. [ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G A 3.15.0-rc7+ #85 [ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012 [ 9969.706052] ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18 [ 9969.795323] ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c [ 9969.884710] ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000 [ 9969.974071] Call Trace: [ 9970.003403] [<ffffffff8162f523>] dump_stack+0x4d/0x66 [ 9970.065074] [<ffffffff8109995a>] __might_sleep+0xfa/0x130 [ 9970.130743] [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0 [ 9970.200638] [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210 [ 9970.272610] [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140 [ 9970.344584] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.409282] [<ffffffff811b1385>] __mpol_dup+0xe5/0x150 [ 9970.471897] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.536585] [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40 [ 9970.613763] [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10 [ 9970.683660] [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50 [ 9970.759795] [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40 [ 9970.834885] [<ffffffff8106a598>] do_fork+0xd8/0x380 [ 9970.894375] [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0 [ 9970.969470] [<ffffffff8106a8c6>] SyS_clone+0x16/0x20 [ 9971.030011] [<ffffffff81642009>] stub_clone+0x69/0x90 [ 9971.091573] [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b The cause is that cpuset_mems_allowed() try to take mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in __mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock protection region to protect the access to cpuset only in current_cpuset_is_being_rebound(). So that we can avoid this bug. This patch is a temporary solution that just addresses the bug mentioned above, can not fix the long-standing issue about cpuset.mems rebinding on fork(): "When the forker's task_struct is duplicated (which includes ->mems_allowed) and it races with an update to cpuset_being_rebound in update_tasks_nodemask() then the task's mems_allowed doesn't get updated. And the child task's mems_allowed can be wrong if the cpuset's nodemask changes before the child has been added to the cgroup's tasklist." Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Acked-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: fix crashes from mbind() merging vmasHugh Dickins2014-07-111-26/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d05f0cdcbe6388723f1900c549b4850360545201 upstream. In v2.6.34 commit 9d8cebd4bcd7 ("mm: fix mbind vma merge problem") introduced vma merging to mbind(), but it should have also changed the convention of passing start vma from queue_pages_range() (formerly check_range()) to new_vma_page(): vma merging may have already freed that structure, resulting in BUG at mm/mempolicy.c:1738 and probably worse crashes. Fixes: 9d8cebd4bcd7 ("mm: fix mbind vma merge problem") Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Tested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Keep the same arguments to migrate_pages() except for private=start] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: revert 0def08e3 ("mm/mempolicy.c: check return code of check_range")Minchan Kim2014-07-111-4/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 082708072a4250f5c4dbc62065e7af93f5e45646 upstream. Revert commit 0def08e3acc2 because check_range can't fail in migrate_to_node with considering current usecases. Quote from Johannes : I think it makes sense to revert. Not because of the semantics, but I : just don't see how check_range() could even fail for this callsite: : : 1. we pass mm->mmap->vm_start in there, so we should not fail due to : find_vma() : : 2. we pass MPOL_MF_DISCONTIG_OK, so the discontig checks do not apply : and so can not fail : : 3. we pass MPOL_MF_MOVE | MPOL_MF_MOVE_ALL, the page table loops will : continue until addr == end, so we never fail with -EIO And I added a new VM_BUG_ON for checking migrate_to_node's future usecase which might pass to MPOL_MF_STRICT. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vasiliy Kulikov <segooon@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * hugetlb: fix copy_hugetlb_page_range() to handle migration/hwpoisoned entryNaoya Horiguchi2014-07-111-28/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4a705fef986231a3e7a6b1a6d3c37025f021f49f upstream. There's a race between fork() and hugepage migration, as a result we try to "dereference" a swap entry as a normal pte, causing kernel panic. The cause of the problem is that copy_hugetlb_page_range() can't handle "swap entry" family (migration entry and hwpoisoned entry) so let's fix it. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: rmap: fix use-after-free in __put_anon_vmaAndrey Ryabinin2014-07-111-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 624483f3ea82598ab0f62f1bdb9177f531ab1892 upstream. While working address sanitizer for kernel I've discovered use-after-free bug in __put_anon_vma. For the last anon_vma, anon_vma->root freed before child anon_vma. Later in anon_vma_free(anon_vma) we are referencing to already freed anon_vma->root to check rwsem. This fixes it by freeing the child anon_vma before freeing anon_vma->root. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: vmscan: clear kswapd's special reclaim powers before exitingJohannes Weiner2014-07-111-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 71abdc15adf8c702a1dd535f8e30df50758848d2 upstream. When kswapd exits, it can end up taking locks that were previously held by allocating tasks while they waited for reclaim. Lockdep currently warns about this: On Wed, May 28, 2014 at 06:06:34PM +0800, Gu Zheng wrote: > inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-R} usage. > kswapd2/1151 [HC0[0]:SC0[0]:HE1:SE1] takes: > (&sig->group_rwsem){+++++?}, at: exit_signals+0x24/0x130 > {RECLAIM_FS-ON-W} state was registered at: > mark_held_locks+0xb9/0x140 > lockdep_trace_alloc+0x7a/0xe0 > kmem_cache_alloc_trace+0x37/0x240 > flex_array_alloc+0x99/0x1a0 > cgroup_attach_task+0x63/0x430 > attach_task_by_pid+0x210/0x280 > cgroup_procs_write+0x16/0x20 > cgroup_file_write+0x120/0x2c0 > vfs_write+0xc0/0x1f0 > SyS_write+0x4c/0xa0 > tracesys+0xdd/0xe2 > irq event stamp: 49 > hardirqs last enabled at (49): _raw_spin_unlock_irqrestore+0x36/0x70 > hardirqs last disabled at (48): _raw_spin_lock_irqsave+0x2b/0xa0 > softirqs last enabled at (0): copy_process.part.24+0x627/0x15f0 > softirqs last disabled at (0): (null) > > other info that might help us debug this: > Possible unsafe locking scenario: > > CPU0 > ---- > lock(&sig->group_rwsem); > <Interrupt> > lock(&sig->group_rwsem); > > *** DEADLOCK *** > > no locks held by kswapd2/1151. > > stack backtrace: > CPU: 30 PID: 1151 Comm: kswapd2 Not tainted 3.10.39+ #4 > Call Trace: > dump_stack+0x19/0x1b > print_usage_bug+0x1f7/0x208 > mark_lock+0x21d/0x2a0 > __lock_acquire+0x52a/0xb60 > lock_acquire+0xa2/0x140 > down_read+0x51/0xa0 > exit_signals+0x24/0x130 > do_exit+0xb5/0xa50 > kthread+0xdb/0x100 > ret_from_fork+0x7c/0xb0 This is because the kswapd thread is still marked as a reclaimer at the time of exit. But because it is exiting, nobody is actually waiting on it to make reclaim progress anymore, and it's nothing but a regular thread at this point. Be tidy and strip it of all its powers (PF_MEMALLOC, PF_SWAPWRITE, PF_KSWAPD, and the lockdep reclaim state) before returning from the thread function. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
| * mm: fix sleeping function warning from __put_anon_vmaHugh Dickins2014-07-111-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7f39dda9d86fb4f4f17af0de170decf125726f8c upstream. Trinity reports BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:47 in_atomic(): 0, irqs_disabled(): 0, pid: 5787, name: trinity-c27 __might_sleep < down_write < __put_anon_vma < page_get_anon_vma < migrate_pages < compact_zone < compact_zone_order < try_to_compact_pages .. Right, since conversion to mutex then rwsem, we should not put_anon_vma() from inside an rcu_read_lock()ed section: fix the two places that did so. And add might_sleep() to anon_vma_free(), as suggested by Peter Zijlstra. Fixes: 88c22088bf23 ("mm: optimize page_lock_anon_vma() fast-path") Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>