From 6c654b5fdf093cd05f35f7c9c2a00182fa5636dc Mon Sep 17 00:00:00 2001 From: "John W. Linville" Date: Thu, 29 Sep 2005 14:42:42 -0700 Subject: [PATCH] swiotlb: move from arch/ia64/lib/ to lib/ The swiotlb implementation is shared by both IA-64 and EM64T. However, the source itself lives under arch/ia64. This patch moves swiotlb.c from arch/ia64/lib to lib/ and fixes-up the appropriate Makefile and Kconfig files. No actual changes are made to swiotlb.c. Signed-off-by: John W. Linville Signed-off-by: Tony Luck --- arch/ia64/lib/Makefile | 2 +- arch/ia64/lib/swiotlb.c | 759 ------------------------------------------------ 2 files changed, 1 insertion(+), 760 deletions(-) delete mode 100644 arch/ia64/lib/swiotlb.c (limited to 'arch/ia64/lib') diff --git a/arch/ia64/lib/Makefile b/arch/ia64/lib/Makefile index 799407e..4be1546 100644 --- a/arch/ia64/lib/Makefile +++ b/arch/ia64/lib/Makefile @@ -9,7 +9,7 @@ lib-y := __divsi3.o __udivsi3.o __modsi3.o __umodsi3.o \ bitop.o checksum.o clear_page.o csum_partial_copy.o \ clear_user.o strncpy_from_user.o strlen_user.o strnlen_user.o \ flush.o ip_fast_csum.o do_csum.o \ - memset.o strlen.o swiotlb.o + memset.o strlen.o lib-$(CONFIG_ITANIUM) += copy_page.o copy_user.o memcpy.o lib-$(CONFIG_MCKINLEY) += copy_page_mck.o memcpy_mck.o diff --git a/arch/ia64/lib/swiotlb.c b/arch/ia64/lib/swiotlb.c deleted file mode 100644 index 875b0c1..0000000 --- a/arch/ia64/lib/swiotlb.c +++ /dev/null @@ -1,759 +0,0 @@ -/* - * Dynamic DMA mapping support. - * - * This implementation is for IA-64 platforms that do not support - * I/O TLBs (aka DMA address translation hardware). - * Copyright (C) 2000 Asit Mallick - * Copyright (C) 2000 Goutham Rao - * Copyright (C) 2000, 2003 Hewlett-Packard Co - * David Mosberger-Tang - * - * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. - * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid - * unnecessary i-cache flushing. - * 04/07/.. ak Better overflow handling. Assorted fixes. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -#include -#include - -#define OFFSET(val,align) ((unsigned long) \ - ( (val) & ( (align) - 1))) - -#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) -#define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) - -/* - * Maximum allowable number of contiguous slabs to map, - * must be a power of 2. What is the appropriate value ? - * The complexity of {map,unmap}_single is linearly dependent on this value. - */ -#define IO_TLB_SEGSIZE 128 - -/* - * log of the size of each IO TLB slab. The number of slabs is command line - * controllable. - */ -#define IO_TLB_SHIFT 11 - -#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) - -/* - * Minimum IO TLB size to bother booting with. Systems with mainly - * 64bit capable cards will only lightly use the swiotlb. If we can't - * allocate a contiguous 1MB, we're probably in trouble anyway. - */ -#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) - -int swiotlb_force; - -/* - * Used to do a quick range check in swiotlb_unmap_single and - * swiotlb_sync_single_*, to see if the memory was in fact allocated by this - * API. - */ -static char *io_tlb_start, *io_tlb_end; - -/* - * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and - * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. - */ -static unsigned long io_tlb_nslabs; - -/* - * When the IOMMU overflows we return a fallback buffer. This sets the size. - */ -static unsigned long io_tlb_overflow = 32*1024; - -void *io_tlb_overflow_buffer; - -/* - * This is a free list describing the number of free entries available from - * each index - */ -static unsigned int *io_tlb_list; -static unsigned int io_tlb_index; - -/* - * We need to save away the original address corresponding to a mapped entry - * for the sync operations. - */ -static unsigned char **io_tlb_orig_addr; - -/* - * Protect the above data structures in the map and unmap calls - */ -static DEFINE_SPINLOCK(io_tlb_lock); - -static int __init -setup_io_tlb_npages(char *str) -{ - if (isdigit(*str)) { - io_tlb_nslabs = simple_strtoul(str, &str, 0); - /* avoid tail segment of size < IO_TLB_SEGSIZE */ - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); - } - if (*str == ',') - ++str; - if (!strcmp(str, "force")) - swiotlb_force = 1; - return 1; -} -__setup("swiotlb=", setup_io_tlb_npages); -/* make io_tlb_overflow tunable too? */ - -/* - * Statically reserve bounce buffer space and initialize bounce buffer data - * structures for the software IO TLB used to implement the PCI DMA API. - */ -void -swiotlb_init_with_default_size (size_t default_size) -{ - unsigned long i; - - if (!io_tlb_nslabs) { - io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); - } - - /* - * Get IO TLB memory from the low pages - */ - io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * - (1 << IO_TLB_SHIFT)); - if (!io_tlb_start) - panic("Cannot allocate SWIOTLB buffer"); - io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); - - /* - * Allocate and initialize the free list array. This array is used - * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE - * between io_tlb_start and io_tlb_end. - */ - io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); - for (i = 0; i < io_tlb_nslabs; i++) - io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); - io_tlb_index = 0; - io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *)); - - /* - * Get the overflow emergency buffer - */ - io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow); - printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n", - virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); -} - -void -swiotlb_init (void) -{ - swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */ -} - -/* - * Systems with larger DMA zones (those that don't support ISA) can - * initialize the swiotlb later using the slab allocator if needed. - * This should be just like above, but with some error catching. - */ -int -swiotlb_late_init_with_default_size (size_t default_size) -{ - unsigned long i, req_nslabs = io_tlb_nslabs; - unsigned int order; - - if (!io_tlb_nslabs) { - io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); - } - - /* - * Get IO TLB memory from the low pages - */ - order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); - io_tlb_nslabs = SLABS_PER_PAGE << order; - - while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { - io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN, - order); - if (io_tlb_start) - break; - order--; - } - - if (!io_tlb_start) - goto cleanup1; - - if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) { - printk(KERN_WARNING "Warning: only able to allocate %ld MB " - "for software IO TLB\n", (PAGE_SIZE << order) >> 20); - io_tlb_nslabs = SLABS_PER_PAGE << order; - } - io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); - memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT)); - - /* - * Allocate and initialize the free list array. This array is used - * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE - * between io_tlb_start and io_tlb_end. - */ - io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, - get_order(io_tlb_nslabs * sizeof(int))); - if (!io_tlb_list) - goto cleanup2; - - for (i = 0; i < io_tlb_nslabs; i++) - io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); - io_tlb_index = 0; - - io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL, - get_order(io_tlb_nslabs * sizeof(char *))); - if (!io_tlb_orig_addr) - goto cleanup3; - - memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *)); - - /* - * Get the overflow emergency buffer - */ - io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, - get_order(io_tlb_overflow)); - if (!io_tlb_overflow_buffer) - goto cleanup4; - - printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - " - "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20, - virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); - - return 0; - -cleanup4: - free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * - sizeof(char *))); - io_tlb_orig_addr = NULL; -cleanup3: - free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * - sizeof(int))); - io_tlb_list = NULL; - io_tlb_end = NULL; -cleanup2: - free_pages((unsigned long)io_tlb_start, order); - io_tlb_start = NULL; -cleanup1: - io_tlb_nslabs = req_nslabs; - return -ENOMEM; -} - -static inline int -address_needs_mapping(struct device *hwdev, dma_addr_t addr) -{ - dma_addr_t mask = 0xffffffff; - /* If the device has a mask, use it, otherwise default to 32 bits */ - if (hwdev && hwdev->dma_mask) - mask = *hwdev->dma_mask; - return (addr & ~mask) != 0; -} - -/* - * Allocates bounce buffer and returns its kernel virtual address. - */ -static void * -map_single(struct device *hwdev, char *buffer, size_t size, int dir) -{ - unsigned long flags; - char *dma_addr; - unsigned int nslots, stride, index, wrap; - int i; - - /* - * For mappings greater than a page, we limit the stride (and - * hence alignment) to a page size. - */ - nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; - if (size > PAGE_SIZE) - stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); - else - stride = 1; - - if (!nslots) - BUG(); - - /* - * Find suitable number of IO TLB entries size that will fit this - * request and allocate a buffer from that IO TLB pool. - */ - spin_lock_irqsave(&io_tlb_lock, flags); - { - wrap = index = ALIGN(io_tlb_index, stride); - - if (index >= io_tlb_nslabs) - wrap = index = 0; - - do { - /* - * If we find a slot that indicates we have 'nslots' - * number of contiguous buffers, we allocate the - * buffers from that slot and mark the entries as '0' - * indicating unavailable. - */ - if (io_tlb_list[index] >= nslots) { - int count = 0; - - for (i = index; i < (int) (index + nslots); i++) - io_tlb_list[i] = 0; - for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) - io_tlb_list[i] = ++count; - dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); - - /* - * Update the indices to avoid searching in - * the next round. - */ - io_tlb_index = ((index + nslots) < io_tlb_nslabs - ? (index + nslots) : 0); - - goto found; - } - index += stride; - if (index >= io_tlb_nslabs) - index = 0; - } while (index != wrap); - - spin_unlock_irqrestore(&io_tlb_lock, flags); - return NULL; - } - found: - spin_unlock_irqrestore(&io_tlb_lock, flags); - - /* - * Save away the mapping from the original address to the DMA address. - * This is needed when we sync the memory. Then we sync the buffer if - * needed. - */ - io_tlb_orig_addr[index] = buffer; - if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) - memcpy(dma_addr, buffer, size); - - return dma_addr; -} - -/* - * dma_addr is the kernel virtual address of the bounce buffer to unmap. - */ -static void -unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir) -{ - unsigned long flags; - int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; - int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; - char *buffer = io_tlb_orig_addr[index]; - - /* - * First, sync the memory before unmapping the entry - */ - if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) - /* - * bounce... copy the data back into the original buffer * and - * delete the bounce buffer. - */ - memcpy(buffer, dma_addr, size); - - /* - * Return the buffer to the free list by setting the corresponding - * entries to indicate the number of contigous entries available. - * While returning the entries to the free list, we merge the entries - * with slots below and above the pool being returned. - */ - spin_lock_irqsave(&io_tlb_lock, flags); - { - count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? - io_tlb_list[index + nslots] : 0); - /* - * Step 1: return the slots to the free list, merging the - * slots with superceeding slots - */ - for (i = index + nslots - 1; i >= index; i--) - io_tlb_list[i] = ++count; - /* - * Step 2: merge the returned slots with the preceding slots, - * if available (non zero) - */ - for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) - io_tlb_list[i] = ++count; - } - spin_unlock_irqrestore(&io_tlb_lock, flags); -} - -static void -sync_single(struct device *hwdev, char *dma_addr, size_t size, int dir) -{ - int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; - char *buffer = io_tlb_orig_addr[index]; - - /* - * bounce... copy the data back into/from the original buffer - * XXX How do you handle DMA_BIDIRECTIONAL here ? - */ - if (dir == DMA_FROM_DEVICE) - memcpy(buffer, dma_addr, size); - else if (dir == DMA_TO_DEVICE) - memcpy(dma_addr, buffer, size); - else - BUG(); -} - -void * -swiotlb_alloc_coherent(struct device *hwdev, size_t size, - dma_addr_t *dma_handle, int flags) -{ - unsigned long dev_addr; - void *ret; - int order = get_order(size); - - /* - * XXX fix me: the DMA API should pass us an explicit DMA mask - * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32 - * bit range instead of a 16MB one). - */ - flags |= GFP_DMA; - - ret = (void *)__get_free_pages(flags, order); - if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) { - /* - * The allocated memory isn't reachable by the device. - * Fall back on swiotlb_map_single(). - */ - free_pages((unsigned long) ret, order); - ret = NULL; - } - if (!ret) { - /* - * We are either out of memory or the device can't DMA - * to GFP_DMA memory; fall back on - * swiotlb_map_single(), which will grab memory from - * the lowest available address range. - */ - dma_addr_t handle; - handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE); - if (dma_mapping_error(handle)) - return NULL; - - ret = phys_to_virt(handle); - } - - memset(ret, 0, size); - dev_addr = virt_to_phys(ret); - - /* Confirm address can be DMA'd by device */ - if (address_needs_mapping(hwdev, dev_addr)) { - printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n", - (unsigned long long)*hwdev->dma_mask, dev_addr); - panic("swiotlb_alloc_coherent: allocated memory is out of " - "range for device"); - } - *dma_handle = dev_addr; - return ret; -} - -void -swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, - dma_addr_t dma_handle) -{ - if (!(vaddr >= (void *)io_tlb_start - && vaddr < (void *)io_tlb_end)) - free_pages((unsigned long) vaddr, get_order(size)); - else - /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ - swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE); -} - -static void -swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) -{ - /* - * Ran out of IOMMU space for this operation. This is very bad. - * Unfortunately the drivers cannot handle this operation properly. - * unless they check for pci_dma_mapping_error (most don't) - * When the mapping is small enough return a static buffer to limit - * the damage, or panic when the transfer is too big. - */ - printk(KERN_ERR "PCI-DMA: Out of SW-IOMMU space for %lu bytes at " - "device %s\n", size, dev ? dev->bus_id : "?"); - - if (size > io_tlb_overflow && do_panic) { - if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL) - panic("PCI-DMA: Memory would be corrupted\n"); - if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL) - panic("PCI-DMA: Random memory would be DMAed\n"); - } -} - -/* - * Map a single buffer of the indicated size for DMA in streaming mode. The - * PCI address to use is returned. - * - * Once the device is given the dma address, the device owns this memory until - * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed. - */ -dma_addr_t -swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir) -{ - unsigned long dev_addr = virt_to_phys(ptr); - void *map; - - if (dir == DMA_NONE) - BUG(); - /* - * If the pointer passed in happens to be in the device's DMA window, - * we can safely return the device addr and not worry about bounce - * buffering it. - */ - if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force) - return dev_addr; - - /* - * Oh well, have to allocate and map a bounce buffer. - */ - map = map_single(hwdev, ptr, size, dir); - if (!map) { - swiotlb_full(hwdev, size, dir, 1); - map = io_tlb_overflow_buffer; - } - - dev_addr = virt_to_phys(map); - - /* - * Ensure that the address returned is DMA'ble - */ - if (address_needs_mapping(hwdev, dev_addr)) - panic("map_single: bounce buffer is not DMA'ble"); - - return dev_addr; -} - -/* - * Since DMA is i-cache coherent, any (complete) pages that were written via - * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to - * flush them when they get mapped into an executable vm-area. - */ -static void -mark_clean(void *addr, size_t size) -{ - unsigned long pg_addr, end; - - pg_addr = PAGE_ALIGN((unsigned long) addr); - end = (unsigned long) addr + size; - while (pg_addr + PAGE_SIZE <= end) { - struct page *page = virt_to_page(pg_addr); - set_bit(PG_arch_1, &page->flags); - pg_addr += PAGE_SIZE; - } -} - -/* - * Unmap a single streaming mode DMA translation. The dma_addr and size must - * match what was provided for in a previous swiotlb_map_single call. All - * other usages are undefined. - * - * After this call, reads by the cpu to the buffer are guaranteed to see - * whatever the device wrote there. - */ -void -swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, - int dir) -{ - char *dma_addr = phys_to_virt(dev_addr); - - if (dir == DMA_NONE) - BUG(); - if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) - unmap_single(hwdev, dma_addr, size, dir); - else if (dir == DMA_FROM_DEVICE) - mark_clean(dma_addr, size); -} - -/* - * Make physical memory consistent for a single streaming mode DMA translation - * after a transfer. - * - * If you perform a swiotlb_map_single() but wish to interrogate the buffer - * using the cpu, yet do not wish to teardown the PCI dma mapping, you must - * call this function before doing so. At the next point you give the PCI dma - * address back to the card, you must first perform a - * swiotlb_dma_sync_for_device, and then the device again owns the buffer - */ -void -swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, - size_t size, int dir) -{ - char *dma_addr = phys_to_virt(dev_addr); - - if (dir == DMA_NONE) - BUG(); - if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) - sync_single(hwdev, dma_addr, size, dir); - else if (dir == DMA_FROM_DEVICE) - mark_clean(dma_addr, size); -} - -void -swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, - size_t size, int dir) -{ - char *dma_addr = phys_to_virt(dev_addr); - - if (dir == DMA_NONE) - BUG(); - if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) - sync_single(hwdev, dma_addr, size, dir); - else if (dir == DMA_FROM_DEVICE) - mark_clean(dma_addr, size); -} - -/* - * Map a set of buffers described by scatterlist in streaming mode for DMA. - * This is the scatter-gather version of the above swiotlb_map_single - * interface. Here the scatter gather list elements are each tagged with the - * appropriate dma address and length. They are obtained via - * sg_dma_{address,length}(SG). - * - * NOTE: An implementation may be able to use a smaller number of - * DMA address/length pairs than there are SG table elements. - * (for example via virtual mapping capabilities) - * The routine returns the number of addr/length pairs actually - * used, at most nents. - * - * Device ownership issues as mentioned above for swiotlb_map_single are the - * same here. - */ -int -swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems, - int dir) -{ - void *addr; - unsigned long dev_addr; - int i; - - if (dir == DMA_NONE) - BUG(); - - for (i = 0; i < nelems; i++, sg++) { - addr = SG_ENT_VIRT_ADDRESS(sg); - dev_addr = virt_to_phys(addr); - if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) { - sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir)); - if (!sg->dma_address) { - /* Don't panic here, we expect map_sg users - to do proper error handling. */ - swiotlb_full(hwdev, sg->length, dir, 0); - swiotlb_unmap_sg(hwdev, sg - i, i, dir); - sg[0].dma_length = 0; - return 0; - } - } else - sg->dma_address = dev_addr; - sg->dma_length = sg->length; - } - return nelems; -} - -/* - * Unmap a set of streaming mode DMA translations. Again, cpu read rules - * concerning calls here are the same as for swiotlb_unmap_single() above. - */ -void -swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems, - int dir) -{ - int i; - - if (dir == DMA_NONE) - BUG(); - - for (i = 0; i < nelems; i++, sg++) - if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) - unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir); - else if (dir == DMA_FROM_DEVICE) - mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length); -} - -/* - * Make physical memory consistent for a set of streaming mode DMA translations - * after a transfer. - * - * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules - * and usage. - */ -void -swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, - int nelems, int dir) -{ - int i; - - if (dir == DMA_NONE) - BUG(); - - for (i = 0; i < nelems; i++, sg++) - if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) - sync_single(hwdev, (void *) sg->dma_address, - sg->dma_length, dir); -} - -void -swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, - int nelems, int dir) -{ - int i; - - if (dir == DMA_NONE) - BUG(); - - for (i = 0; i < nelems; i++, sg++) - if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) - sync_single(hwdev, (void *) sg->dma_address, - sg->dma_length, dir); -} - -int -swiotlb_dma_mapping_error(dma_addr_t dma_addr) -{ - return (dma_addr == virt_to_phys(io_tlb_overflow_buffer)); -} - -/* - * Return whether the given PCI device DMA address mask can be supported - * properly. For example, if your device can only drive the low 24-bits - * during PCI bus mastering, then you would pass 0x00ffffff as the mask to - * this function. - */ -int -swiotlb_dma_supported (struct device *hwdev, u64 mask) -{ - return (virt_to_phys (io_tlb_end) - 1) <= mask; -} - -EXPORT_SYMBOL(swiotlb_init); -EXPORT_SYMBOL(swiotlb_map_single); -EXPORT_SYMBOL(swiotlb_unmap_single); -EXPORT_SYMBOL(swiotlb_map_sg); -EXPORT_SYMBOL(swiotlb_unmap_sg); -EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); -EXPORT_SYMBOL(swiotlb_sync_single_for_device); -EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); -EXPORT_SYMBOL(swiotlb_sync_sg_for_device); -EXPORT_SYMBOL(swiotlb_dma_mapping_error); -EXPORT_SYMBOL(swiotlb_alloc_coherent); -EXPORT_SYMBOL(swiotlb_free_coherent); -EXPORT_SYMBOL(swiotlb_dma_supported); -- cgit v1.1