/* * Linux performance counter support for MIPS. * * Copyright (C) 2010 MIPS Technologies, Inc. * Author: Deng-Cheng Zhu * * This code is based on the implementation for ARM, which is in turn * based on the sparc64 perf event code and the x86 code. Performance * counter access is based on the MIPS Oprofile code. And the callchain * support references the code of MIPS stacktrace.c. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include /* For perf_irq */ /* These are for 32bit counters. For 64bit ones, define them accordingly. */ #define MAX_PERIOD ((1ULL << 32) - 1) #define VALID_COUNT 0x7fffffff #define TOTAL_BITS 32 #define HIGHEST_BIT 31 #define MIPS_MAX_HWEVENTS 4 struct cpu_hw_events { /* Array of events on this cpu. */ struct perf_event *events[MIPS_MAX_HWEVENTS]; /* * Set the bit (indexed by the counter number) when the counter * is used for an event. */ unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; /* * The borrowed MSB for the performance counter. A MIPS performance * counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit * counters) as a factor of determining whether a counter overflow * should be signaled. So here we use a separate MSB for each * counter to make things easy. */ unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; /* * Software copy of the control register for each performance counter. * MIPS CPUs vary in performance counters. They use this differently, * and even may not use it. */ unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; }; DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .saved_ctrl = {0}, }; /* The description of MIPS performance events. */ struct mips_perf_event { unsigned int event_id; /* * MIPS performance counters are indexed starting from 0. * CNTR_EVEN indicates the indexes of the counters to be used are * even numbers. */ unsigned int cntr_mask; #define CNTR_EVEN 0x55555555 #define CNTR_ODD 0xaaaaaaaa #ifdef CONFIG_MIPS_MT_SMP enum { T = 0, V = 1, P = 2, } range; #else #define T #define V #define P #endif }; static struct mips_perf_event raw_event; static DEFINE_MUTEX(raw_event_mutex); #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff #define C(x) PERF_COUNT_HW_CACHE_##x struct mips_pmu { const char *name; int irq; irqreturn_t (*handle_irq)(int irq, void *dev); int (*handle_shared_irq)(void); void (*start)(void); void (*stop)(void); int (*alloc_counter)(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc); u64 (*read_counter)(unsigned int idx); void (*write_counter)(unsigned int idx, u64 val); void (*enable_event)(struct hw_perf_event *evt, int idx); void (*disable_event)(int idx); const struct mips_perf_event *(*map_raw_event)(u64 config); const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; const struct mips_perf_event (*cache_event_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; unsigned int num_counters; }; static const struct mips_pmu *mipspmu; static int mipspmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; u64 uleft; unsigned long flags; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > (s64)MAX_PERIOD) left = MAX_PERIOD; local64_set(&hwc->prev_count, (u64)-left); local_irq_save(flags); uleft = (u64)(-left) & MAX_PERIOD; uleft > VALID_COUNT ? set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs); mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT); local_irq_restore(flags); perf_event_update_userpage(event); return ret; } static void mipspmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long flags; int shift = 64 - TOTAL_BITS; s64 prev_raw_count, new_raw_count; u64 delta; again: prev_raw_count = local64_read(&hwc->prev_count); local_irq_save(flags); /* Make the counter value be a "real" one. */ new_raw_count = mipspmu->read_counter(idx); if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) { new_raw_count &= VALID_COUNT; clear_bit(idx, cpuc->msbs); } else new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT); local_irq_restore(flags); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return; } static void mipspmu_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (!mipspmu) return; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* Set the period for the event. */ mipspmu_event_set_period(event, hwc, hwc->idx); /* Enable the event. */ mipspmu->enable_event(hwc, hwc->idx); } static void mipspmu_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (!mipspmu) return; if (!(hwc->state & PERF_HES_STOPPED)) { /* We are working on a local event. */ mipspmu->disable_event(hwc->idx); barrier(); mipspmu_event_update(event, hwc, hwc->idx); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static int mipspmu_add(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* To look for a free counter for this event. */ idx = mipspmu->alloc_counter(cpuc, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then * make sure it is disabled. */ event->hw.idx = idx; mipspmu->disable_event(idx); cpuc->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) mipspmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static void mipspmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0 || idx >= mipspmu->num_counters); mipspmu_stop(event, PERF_EF_UPDATE); cpuc->events[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_event_update_userpage(event); } static void mipspmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; mipspmu_event_update(event, hwc, hwc->idx); } static void mipspmu_enable(struct pmu *pmu) { if (mipspmu) mipspmu->start(); } static void mipspmu_disable(struct pmu *pmu) { if (mipspmu) mipspmu->stop(); } static atomic_t active_events = ATOMIC_INIT(0); static DEFINE_MUTEX(pmu_reserve_mutex); static int (*save_perf_irq)(void); static int mipspmu_get_irq(void) { int err; if (mipspmu->irq >= 0) { /* Request my own irq handler. */ err = request_irq(mipspmu->irq, mipspmu->handle_irq, IRQF_DISABLED | IRQF_NOBALANCING, "mips_perf_pmu", NULL); if (err) { pr_warning("Unable to request IRQ%d for MIPS " "performance counters!\n", mipspmu->irq); } } else if (cp0_perfcount_irq < 0) { /* * We are sharing the irq number with the timer interrupt. */ save_perf_irq = perf_irq; perf_irq = mipspmu->handle_shared_irq; err = 0; } else { pr_warning("The platform hasn't properly defined its " "interrupt controller.\n"); err = -ENOENT; } return err; } static void mipspmu_free_irq(void) { if (mipspmu->irq >= 0) free_irq(mipspmu->irq, NULL); else if (cp0_perfcount_irq < 0) perf_irq = save_perf_irq; } /* * mipsxx/rm9000/loongson2 have different performance counters, they have * specific low-level init routines. */ static void reset_counters(void *arg); static int __hw_perf_event_init(struct perf_event *event); static void hw_perf_event_destroy(struct perf_event *event) { if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { /* * We must not call the destroy function with interrupts * disabled. */ on_each_cpu(reset_counters, (void *)(long)mipspmu->num_counters, 1); mipspmu_free_irq(); mutex_unlock(&pmu_reserve_mutex); } } static int mipspmu_event_init(struct perf_event *event) { int err = 0; switch (event->attr.type) { case PERF_TYPE_RAW: case PERF_TYPE_HARDWARE: case PERF_TYPE_HW_CACHE: break; default: return -ENOENT; } if (!mipspmu || event->cpu >= nr_cpumask_bits || (event->cpu >= 0 && !cpu_online(event->cpu))) return -ENODEV; if (!atomic_inc_not_zero(&active_events)) { if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) { atomic_dec(&active_events); return -ENOSPC; } mutex_lock(&pmu_reserve_mutex); if (atomic_read(&active_events) == 0) err = mipspmu_get_irq(); if (!err) atomic_inc(&active_events); mutex_unlock(&pmu_reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static struct pmu pmu = { .pmu_enable = mipspmu_enable, .pmu_disable = mipspmu_disable, .event_init = mipspmu_event_init, .add = mipspmu_add, .del = mipspmu_del, .start = mipspmu_start, .stop = mipspmu_stop, .read = mipspmu_read, }; static inline unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) { /* * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for * event_id. */ #ifdef CONFIG_MIPS_MT_SMP return ((unsigned int)pev->range << 24) | (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); #else return (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); #endif } static const struct mips_perf_event * mipspmu_map_general_event(int idx) { const struct mips_perf_event *pev; pev = ((*mipspmu->general_event_map)[idx].event_id == UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) : &(*mipspmu->general_event_map)[idx]); return pev; } static const struct mips_perf_event * mipspmu_map_cache_event(u64 config) { unsigned int cache_type, cache_op, cache_result; const struct mips_perf_event *pev; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return ERR_PTR(-EINVAL); cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return ERR_PTR(-EINVAL); cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return ERR_PTR(-EINVAL); pev = &((*mipspmu->cache_event_map) [cache_type] [cache_op] [cache_result]); if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID) return ERR_PTR(-EOPNOTSUPP); return pev; } static int validate_event(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event fake_hwc = event->hw; /* Allow mixed event group. So return 1 to pass validation. */ if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF) return 1; return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct cpu_hw_events fake_cpuc; memset(&fake_cpuc, 0, sizeof(fake_cpuc)); if (!validate_event(&fake_cpuc, leader)) return -ENOSPC; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(&fake_cpuc, sibling)) return -ENOSPC; } if (!validate_event(&fake_cpuc, event)) return -ENOSPC; return 0; } /* This is needed by specific irq handlers in perf_event_*.c */ static void handle_associated_event(struct cpu_hw_events *cpuc, int idx, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc = &event->hw; mipspmu_event_update(event, hwc, idx); data->period = event->hw.last_period; if (!mipspmu_event_set_period(event, hwc, idx)) return; if (perf_event_overflow(event, 0, data, regs)) mipspmu->disable_event(idx); } #include "perf_event_mipsxx.c" /* Callchain handling code. */ /* * Leave userspace callchain empty for now. When we find a way to trace * the user stack callchains, we add here. */ void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { } static void save_raw_perf_callchain(struct perf_callchain_entry *entry, unsigned long reg29) { unsigned long *sp = (unsigned long *)reg29; unsigned long addr; while (!kstack_end(sp)) { addr = *sp++; if (__kernel_text_address(addr)) { perf_callchain_store(entry, addr); if (entry->nr >= PERF_MAX_STACK_DEPTH) break; } } } void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long sp = regs->regs[29]; #ifdef CONFIG_KALLSYMS unsigned long ra = regs->regs[31]; unsigned long pc = regs->cp0_epc; if (raw_show_trace || !__kernel_text_address(pc)) { unsigned long stack_page = (unsigned long)task_stack_page(current); if (stack_page && sp >= stack_page && sp <= stack_page + THREAD_SIZE - 32) save_raw_perf_callchain(entry, sp); return; } do { perf_callchain_store(entry, pc); if (entry->nr >= PERF_MAX_STACK_DEPTH) break; pc = unwind_stack(current, &sp, pc, &ra); } while (pc); #else save_raw_perf_callchain(entry, sp); #endif }