/* * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights * reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the NetLogic * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include void core_send_ipi(int logical_cpu, unsigned int action) { int cpu = cpu_logical_map(logical_cpu); u32 tid = cpu & 0x3; u32 pid = (cpu >> 2) & 0x07; u32 ipi = (tid << 16) | (pid << 20); if (action & SMP_CALL_FUNCTION) ipi |= IRQ_IPI_SMP_FUNCTION; else if (action & SMP_RESCHEDULE_YOURSELF) ipi |= IRQ_IPI_SMP_RESCHEDULE; else return; pic_send_ipi(ipi); } void nlm_send_ipi_single(int cpu, unsigned int action) { core_send_ipi(cpu, action); } void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action) { int cpu; for_each_cpu(cpu, mask) { core_send_ipi(cpu, action); } } /* IRQ_IPI_SMP_FUNCTION Handler */ void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc) { smp_call_function_interrupt(); } /* IRQ_IPI_SMP_RESCHEDULE handler */ void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc) { set_need_resched(); } void nlm_common_ipi_handler(int irq, struct pt_regs *regs) { if (irq == IRQ_IPI_SMP_FUNCTION) { smp_call_function_interrupt(); } else { /* Announce that we are for reschduling */ set_need_resched(); } } /* * Called before going into mips code, early cpu init */ void nlm_early_init_secondary(void) { write_c0_ebase((uint32_t)nlm_common_ebase); /* TLB partition here later */ } /* * Code to run on secondary just after probing the CPU */ static void __cpuinit nlm_init_secondary(void) { nlm_smp_irq_init(); } void nlm_smp_finish(void) { #ifdef notyet nlm_common_msgring_cpu_init(); #endif } void nlm_cpus_done(void) { } /* * Boot all other cpus in the system, initialize them, and bring them into * the boot function */ int nlm_cpu_unblock[NR_CPUS]; int nlm_cpu_ready[NR_CPUS]; unsigned long nlm_next_gp; unsigned long nlm_next_sp; cpumask_t phys_cpu_present_map; void nlm_boot_secondary(int logical_cpu, struct task_struct *idle) { unsigned long gp = (unsigned long)task_thread_info(idle); unsigned long sp = (unsigned long)__KSTK_TOS(idle); int cpu = cpu_logical_map(logical_cpu); nlm_next_sp = sp; nlm_next_gp = gp; /* barrier */ __sync(); nlm_cpu_unblock[cpu] = 1; } void __init nlm_smp_setup(void) { unsigned int boot_cpu; int num_cpus, i; boot_cpu = hard_smp_processor_id(); cpus_clear(phys_cpu_present_map); cpu_set(boot_cpu, phys_cpu_present_map); __cpu_number_map[boot_cpu] = 0; __cpu_logical_map[0] = boot_cpu; cpu_set(0, cpu_possible_map); num_cpus = 1; for (i = 0; i < NR_CPUS; i++) { if (nlm_cpu_ready[i]) { cpu_set(i, phys_cpu_present_map); __cpu_number_map[i] = num_cpus; __cpu_logical_map[num_cpus] = i; cpu_set(num_cpus, cpu_possible_map); ++num_cpus; } } pr_info("Phys CPU present map: %lx, possible map %lx\n", (unsigned long)phys_cpu_present_map.bits[0], (unsigned long)cpu_possible_map.bits[0]); pr_info("Detected %i Slave CPU(s)\n", num_cpus); } void nlm_prepare_cpus(unsigned int max_cpus) { } struct plat_smp_ops nlm_smp_ops = { .send_ipi_single = nlm_send_ipi_single, .send_ipi_mask = nlm_send_ipi_mask, .init_secondary = nlm_init_secondary, .smp_finish = nlm_smp_finish, .cpus_done = nlm_cpus_done, .boot_secondary = nlm_boot_secondary, .smp_setup = nlm_smp_setup, .prepare_cpus = nlm_prepare_cpus, }; unsigned long secondary_entry_point; int nlm_wakeup_secondary_cpus(u32 wakeup_mask) { unsigned int tid, pid, ipi, i, boot_cpu; void *reset_vec; secondary_entry_point = (unsigned long)prom_pre_boot_secondary_cpus; reset_vec = (void *)CKSEG1ADDR(0x1fc00000); memcpy(reset_vec, nlm_boot_smp_nmi, 0x80); boot_cpu = hard_smp_processor_id(); for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpu) continue; if (wakeup_mask & (1u << i)) { tid = i & 0x3; pid = (i >> 2) & 0x7; ipi = (tid << 16) | (pid << 20) | (1 << 8); pic_send_ipi(ipi); } } return 0; }