/* * max17042_fuelgauge.c * Samsung MAX17042 Fuel Gauge Driver * * Copyright (C) 2012 Samsung Electronics * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #ifdef CONFIG_FUELGAUGE_MAX17042_VOLTAGE_TRACKING static int max17042_write_reg(struct i2c_client *client, int reg, u8 *buf) { int ret; ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf); if (ret < 0) pr_err("%s: Error(%d)\n", __func__, ret); return ret; } static int max17042_read_reg(struct i2c_client *client, int reg, u8 *buf) { int ret; ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf); if (ret < 0) pr_err("%s: Error(%d)\n", __func__, ret); return ret; } static void max17042_write_reg_array(struct i2c_client *client, u8 *buf, int size) { int i; for (i = 0; i < size; i += 3) max17042_write_reg(client, (u8) (*(buf + i)), (buf + i) + 1); } static void max17042_init_regs(struct i2c_client *client) { u8 data[2]; if (max17042_read_reg(client, MAX17042_REG_FILTERCFG, data) < 0) return; /* Clear average vcell (12 sec) */ data[0] &= 0x8f; max17042_write_reg(client, MAX17042_REG_FILTERCFG, data); } static void max17042_get_version(struct i2c_client *client) { u8 data[2]; if (max17042_read_reg(client, MAX17042_REG_VERSION, data) < 0) return; pr_debug("MAX17042 Fuel-Gauge Ver %d%d\n", data[0], data[1]); } static void max17042_alert_init(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; /* SALRT Threshold setting */ data[0] = fuelgauge->pdata->fuel_alert_soc; data[1] = 0xff; max17042_write_reg(client, MAX17042_REG_SALRT_TH, data); /* VALRT Threshold setting */ data[0] = 0x00; data[1] = 0xff; max17042_write_reg(client, MAX17042_REG_VALRT_TH, data); /* TALRT Threshold setting */ data[0] = 0x80; data[1] = 0x7f; max17042_write_reg(client, MAX17042_REG_TALRT_TH, data); } static bool max17042_check_status(struct i2c_client *client) { u8 data[2]; bool ret = false; /* check if Smn was generated */ if (max17042_read_reg(client, MAX17042_REG_STATUS, data) < 0) return ret; pr_info("%s : status_reg(%02x%02x)\n", __func__, data[1], data[0]); /* minimum SOC threshold exceeded. */ if (data[1] & (0x1 << 2)) ret = true; /* clear status reg */ if (!ret) { data[1] = 0; max17042_write_reg(client, MAX17042_REG_STATUS, data); msleep(200); } return ret; } static int max17042_set_temperature(struct i2c_client *client, int temperature) { u8 data[2]; data[0] = 0; data[1] = temperature; max17042_write_reg(client, MAX17042_REG_TEMPERATURE, data); pr_debug("%s: temperature to (%d)\n", __func__, temperature); return temperature; } static int max17042_get_temperature(struct i2c_client *client) { u8 data[2]; s32 temperature = 0; if (max17042_read_reg(client, MAX17042_REG_TEMPERATURE, data) < 0) return -ERANGE; /* data[] store 2's compliment format number */ if (data[1] & (0x1 << 7)) { /* Negative */ temperature = ((~(data[1])) & 0xFF) + 1; temperature *= (-1000); } else { temperature = data[1] & 0x7F; temperature *= 1000; temperature += data[0] * 39 / 10; } pr_debug("%s: temperature (%d)\n", __func__, temperature); return temperature; } /* soc should be 0.1% unit */ static int max17042_get_soc(struct i2c_client *client) { u8 data[2]; int soc; if (max17042_read_reg(client, MAX17042_REG_SOC_VF, data) < 0) return -EINVAL; soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; pr_debug("%s : raw capacity (%d)\n", __func__, soc); return min(soc, 1000); } static int max17042_get_vfocv(struct i2c_client *client) { u8 data[2]; u32 vfocv = 0; if (max17042_read_reg(client, MAX17042_REG_VFOCV, data) < 0) return -EINVAL; vfocv = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s : vfocv (%d)\n", __func__, vfocv); return vfocv; } static int max17042_get_vcell(struct i2c_client *client) { u8 data[2]; u32 vcell = 0; if (max17042_read_reg(client, MAX17042_REG_VCELL, data) < 0) return -EINVAL; vcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s : vcell (%d)\n", __func__, vcell); return vcell; } static int max17042_get_avgvcell(struct i2c_client *client) { u8 data[2]; u32 avgvcell = 0; if (max17042_read_reg(client, MAX17042_REG_AVGVCELL, data) < 0) return -EINVAL; avgvcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s : avgvcell (%d)\n", __func__, avgvcell); return avgvcell; } static int max17042_regs[] = { MAX17042_REG_STATUS, /* 0x00 */ MAX17042_REG_VALRT_TH, /* 0x01 */ MAX17042_REG_TALRT_TH, /* 0x02 */ MAX17042_REG_SALRT_TH, /* 0x03 */ MAX17042_REG_TEMPERATURE, /* 0x08 */ MAX17042_REG_VCELL, /* 0x09 */ MAX17042_REG_AVGVCELL, /* 0x19 */ MAX17042_REG_CONFIG, /* 0x1D */ MAX17042_REG_VERSION, /* 0x21 */ MAX17042_REG_LEARNCFG, /* 0x28 */ MAX17042_REG_FILTERCFG, /* 0x29 */ MAX17042_REG_MISCCFG, /* 0x2B */ MAX17042_REG_CGAIN, /* 0x2E */ MAX17042_REG_RCOMP, /* 0x38 */ MAX17042_REG_VFOCV, /* 0xFB */ MAX17042_REG_SOC_VF, /* 0xFF */ -1, /* end */ }; static void max17042_read_regs(struct i2c_client *client, char *str) { int i; u8 data = 0; for (i = 0; ; i++) { if (max17042_regs[i] == -1) break; max17042_read_reg(client, max17042_regs[i], &data); sprintf(str+strlen(str), "%04xh, ", data); } } bool sec_hal_fg_init(struct i2c_client *client) { /* initialize fuel gauge registers */ max17042_init_regs(client); max17042_get_version(client); return true; } bool sec_hal_fg_suspend(struct i2c_client *client) { return true; } bool sec_hal_fg_resume(struct i2c_client *client) { return true; } bool sec_hal_fg_fuelalert_init(struct i2c_client *client, int soc) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; /* 1. Set max17042 alert configuration. */ max17042_alert_init(client); if (max17042_read_reg(client, MAX17042_REG_CONFIG, data) < 0) return -1; /*Enable Alert (Aen = 1) */ data[0] |= (0x1 << 2); max17042_write_reg(client, MAX17042_REG_CONFIG, data); pr_debug("%s : config_reg(%02x%02x) irq(%d)\n", __func__, data[1], data[0], fuelgauge->pdata->fg_irq); return true; } bool sec_hal_fg_is_fuelalerted(struct i2c_client *client) { return max17042_check_status(client); } bool sec_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted) { struct sec_fuelgauge_info *fuelgauge = irq_data; u8 data[2]; /* update SOC */ /* max17042_get_soc(fuelgauge->client); */ if (is_fuel_alerted) { if (max17042_read_reg(fuelgauge->client, MAX17042_REG_CONFIG, data) < 0) return false; data[1] |= (0x1 << 3); max17042_write_reg(fuelgauge->client, MAX17042_REG_CONFIG, data); pr_info("%s: Fuel-alert Alerted!! (%02x%02x)\n", __func__, data[1], data[0]); } else { if (max17042_read_reg(fuelgauge->client, MAX17042_REG_CONFIG, data) < 0) return false; data[1] &= (~(0x1 << 3)); max17042_write_reg(fuelgauge->client, MAX17042_REG_CONFIG, data); pr_info("%s: Fuel-alert Released!! (%02x%02x)\n", __func__, data[1], data[0]); } max17042_read_reg(fuelgauge->client, MAX17042_REG_VCELL, data); pr_debug("%s : MAX17042_REG_VCELL(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_TEMPERATURE, data); pr_debug("%s : MAX17042_REG_TEMPERATURE(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_CONFIG, data); pr_debug("%s : MAX17042_REG_CONFIG(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_VFOCV, data); pr_debug("%s : MAX17042_REG_VFOCV(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_SOC_VF, data); pr_debug("%s : MAX17042_REG_SOC_VF(%02x%02x)\n", __func__, data[1], data[0]); pr_debug("%s : FUEL GAUGE IRQ (%d)\n", __func__, gpio_get_value(fuelgauge->pdata->fg_irq)); #if 0 max17042_read_reg(fuelgauge->client, MAX17042_REG_STATUS, data); pr_debug("%s : MAX17042_REG_STATUS(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_VALRT_TH, data); pr_debug("%s : MAX17042_REG_VALRT_TH(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_TALRT_TH, data); pr_debug("%s : MAX17042_REG_TALRT_TH(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_SALRT_TH, data); pr_debug("%s : MAX17042_REG_SALRT_TH(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_AVGVCELL, data); pr_debug("%s : MAX17042_REG_AVGVCELL(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_VERSION, data); pr_debug("%s : MAX17042_REG_VERSION(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_LEARNCFG, data); pr_debug("%s : MAX17042_REG_LEARNCFG(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_MISCCFG, data); pr_debug("%s : MAX17042_REG_MISCCFG(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_CGAIN, data); pr_debug("%s : MAX17042_REG_CGAIN(%02x%02x)\n", __func__, data[1], data[0]); max17042_read_reg(fuelgauge->client, MAX17042_REG_RCOMP, data); pr_debug("%s : MAX17042_REG_RCOMP(%02x%02x)\n", __func__, data[1], data[0]); #endif return true; } bool sec_hal_fg_full_charged(struct i2c_client *client) { return true; } bool sec_hal_fg_get_property(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = max17042_get_vcell(client); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case SEC_BATTEY_VOLTAGE_AVERAGE: val->intval = max17042_get_avgvcell(client); break; case SEC_BATTEY_VOLTAGE_OCV: val->intval = max17042_get_vfocv(client); break; } break; /* Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = 0; break; /* Average Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = 0; break; /* SOC (%) */ case POWER_SUPPLY_PROP_CAPACITY: val->intval = max17042_get_soc(client); break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = max17042_get_temperature(client); break; default: return false; } return true; } bool sec_hal_fg_set_property(struct i2c_client *client, enum power_supply_property psp, const union power_supply_propval *val) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: max17042_set_temperature(client, val->intval); break; default: return false; } return true; } ssize_t sec_hal_fg_show_attrs(struct device *dev, const ptrdiff_t offset, char *buf) { struct power_supply *psy = dev_get_drvdata(dev); struct sec_fuelgauge_info *fg = container_of(psy, struct sec_fuelgauge_info, psy_fg); int i = 0; char *str = NULL; switch (offset) { /* case FG_REG: */ /* break; */ case FG_DATA: i += scnprintf(buf + i, PAGE_SIZE - i, "%02x%02x\n", fg->reg_data[1], fg->reg_data[0]); break; case FG_REGS: str = kzalloc(sizeof(char)*1024, GFP_KERNEL); if (!str) return -ENOMEM; max17042_read_regs(fg->client, str); i += scnprintf(buf + i, PAGE_SIZE - i, "%s\n", str); kfree(str); break; default: i = -EINVAL; break; } return i; } ssize_t sec_hal_fg_store_attrs(struct device *dev, const ptrdiff_t offset, const char *buf, size_t count) { struct power_supply *psy = dev_get_drvdata(dev); struct sec_fuelgauge_info *fg = container_of(psy, struct sec_fuelgauge_info, psy_fg); int ret = 0; int x = 0; u8 data[2]; switch (offset) { case FG_REG: if (sscanf(buf, "%x\n", &x) == 1) { fg->reg_addr = x; max17042_read_reg(fg->client, fg->reg_addr, fg->reg_data); pr_debug("%s: (read) addr = 0x%x, data = 0x%02x%02x\n", __func__, fg->reg_addr, fg->reg_data[1], fg->reg_data[0]); } ret = count; break; case FG_DATA: if (sscanf(buf, "%x\n", &x) == 1) { data[0] = (x & 0xFF00) >> 8; data[1] = (x & 0x00FF); pr_debug("%s: (write) addr = 0x%x, data = 0x%02x%02x\n", __func__, fg->reg_addr, data[1], data[0]); max17042_write_reg(fg->client, fg->reg_addr, data); } ret = count; break; default: ret = -EINVAL; break; } return ret; } #endif #ifdef CONFIG_FUELGAUGE_MAX17042_COULOMB_COUNTING static int fg_get_battery_type(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); return fuelgauge->info.battery_type; } static int fg_i2c_read(struct i2c_client *client, u8 reg, u8 *data, u8 length) { s32 value; value = i2c_smbus_read_i2c_block_data(client, reg, length, data); if (value < 0 || value != length) { pr_err("%s: Failed to fg_i2c_read. status = %d\n", __func__, value); return -1; } return 0; } static int fg_i2c_write(struct i2c_client *client, u8 reg, u8 *data, u8 length) { s32 value; value = i2c_smbus_write_i2c_block_data(client, reg, length, data); if (value < 0) { pr_err("%s: Failed to fg_i2c_write, error code=%d\n", __func__, value); return -1; } return 0; } static int fg_read_register(struct i2c_client *client, u8 addr) { u8 data[2]; if (fg_i2c_read(client, addr, data, 2) < 0) { pr_err("%s: Failed to read addr(0x%x)\n", __func__, addr); return -1; } return (data[1] << 8) | data[0]; } static int fg_write_register(struct i2c_client *client, u8 addr, u16 w_data) { u8 data[2]; data[0] = w_data & 0xFF; data[1] = w_data >> 8; if (fg_i2c_write(client, addr, data, 2) < 0) { pr_err("%s: Failed to write addr(0x%x)\n", __func__, addr); return -1; } return 0; } static int fg_read_16register(struct i2c_client *client, u8 addr, u16 *r_data) { u8 data[32]; int i = 0; if (fg_i2c_read(client, addr, data, 32) < 0) { pr_err("%s: Failed to read addr(0x%x)\n", __func__, addr); return -1; } for (i = 0; i < 16; i++) r_data[i] = (data[2 * i + 1] << 8) | data[2 * i]; return 0; } static void fg_write_and_verify_register(struct i2c_client *client, u8 addr, u16 w_data) { u16 r_data; u8 retry_cnt = 2; while (retry_cnt) { fg_write_register(client, addr, w_data); r_data = fg_read_register(client, addr); if (r_data != w_data) { pr_err("%s: verification failed (addr : 0x%x, w_data : 0x%x, r_data : 0x%x)\n", __func__, addr, w_data, r_data); retry_cnt--; } else break; } } static void fg_test_print(struct i2c_client *client) { u8 data[2]; u32 average_vcell; u16 w_data; u32 temp; u32 temp2; u16 reg_data; if (fg_i2c_read(client, AVR_VCELL_REG, data, 2) < 0) { pr_err("%s: Failed to read VCELL\n", __func__); return; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; average_vcell = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; average_vcell += (temp2 << 4); pr_info("%s : AVG_VCELL(%d), data(0x%04x)\n", __func__, average_vcell, (data[1]<<8) | data[0]); reg_data = fg_read_register(client, FULLCAP_REG); pr_info("%s : FULLCAP(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = fg_read_register(client, REMCAP_REP_REG); pr_info("%s : REMCAP_REP(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = fg_read_register(client, REMCAP_MIX_REG); pr_info("%s : REMCAP_MIX(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = fg_read_register(client, REMCAP_AV_REG); pr_info("%s : REMCAP_AV(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); } static void fg_periodic_read(struct i2c_client *client) { u8 reg; int i; int data[0x10]; for (i = 0; i < 16; i++) { for (reg = 0; reg < 0x10; reg++) data[reg] = fg_read_register(client, reg + i * 0x10); pr_debug("%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x00], data[0x01], data[0x02], data[0x03], data[0x04], data[0x05], data[0x06], data[0x07]); pr_debug("%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x08], data[0x09], data[0x0a], data[0x0b], data[0x0c], data[0x0d], data[0x0e], data[0x0f]); if (i == 4) i = 13; } pr_debug("\n"); } static void fg_read_regs(struct i2c_client *client, char *str) { u8 reg; int i; int data[0x10]; for (i = 0; i < 16; i++) { for (reg = 0; reg < 0x10; reg++) data[reg] = fg_read_register(client, reg + i * 0x10); sprintf(str, "%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x00], data[0x01], data[0x02], data[0x03], data[0x04], data[0x05], data[0x06], data[0x07]); sprintf(str, "%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x08], data[0x09], data[0x0a], data[0x0b], data[0x0c], data[0x0d], data[0x0e], data[0x0f]); if (i == 4) i = 13; } } static int fg_read_vcell(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; u32 vcell; u16 w_data; u32 temp; u32 temp2; if (fg_i2c_read(client, VCELL_REG, data, 2) < 0) { pr_err("%s: Failed to read VCELL\n", __func__); return -1; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; vcell = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; vcell += (temp2 << 4); if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_info("%s : VCELL(%d), data(0x%04x)\n", __func__, vcell, (data[1]<<8) | data[0]); return vcell; } static int fg_read_vfocv(struct i2c_client *client) { u8 data[2]; u32 vfocv = 0; u16 w_data; u32 temp; u32 temp2; if (fg_i2c_read(client, VFOCV_REG, data, 2) < 0) { pr_err("%s: Failed to read VFOCV\n", __func__); return -1; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; vfocv = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; vfocv += (temp2 << 4); return vfocv; } static int fg_check_battery_present(struct i2c_client *client) { u8 status_data[2]; int ret = 1; /* 1. Check Bst bit */ if (fg_i2c_read(client, STATUS_REG, status_data, 2) < 0) { pr_err("%s: Failed to read STATUS_REG\n", __func__); return 0; } if (status_data[0] & (0x1 << 3)) { pr_info("%s - addr(0x01), data(0x%04x)\n", __func__, (status_data[1]<<8) | status_data[0]); pr_info("%s : battery is absent!!\n", __func__); ret = 0; } return ret; } static int fg_read_temp(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; int temper = 0; if (fg_check_battery_present(client)) { if (fg_i2c_read(client, TEMPERATURE_REG, data, 2) < 0) { pr_err("%s: Failed to read TEMPERATURE_REG\n", __func__); return -1; } if (data[1]&(0x1 << 7)) { temper = ((~(data[1]))&0xFF)+1; temper *= (-1000); } else { temper = data[1] & 0x7f; temper *= 1000; temper += data[0] * 39 / 10; /* Adjust temperature over 47, * only for SDI battery type */ if (fg_get_battery_type(client) == SDI_BATTERY_TYPE) { if (temper >= 47000 && temper < 60000) temper = (temper * SDI_TRIM1_1 / 100) - SDI_TRIM1_2; else if (temper >= 60000) temper = (temper * SDI_TRIM2_1 / 100) - 51000; } } } else temper = 20000; if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_info("%s : TEMPERATURE(%d), data(0x%04x)\n", __func__, temper, (data[1]<<8) | data[0]); return temper/100; } static int fg_read_vfsoc(struct i2c_client *client) { u8 data[2]; int soc; if (fg_i2c_read(client, VFSOC_REG, data, 2) < 0) { pr_err("%s: Failed to read VFSOC\n", __func__); return -1; } soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; return min(soc, 1000); } /* soc should be 0.1% unit */ static int fg_read_soc(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; int soc; if (fg_i2c_read(client, SOCREP_REG, data, 2) < 0) { pr_err("%s: Failed to read SOCREP\n", __func__); return -1; } soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; pr_debug("%s : raw capacity (%d)\n", __func__, soc); if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_debug("%s : raw capacity (%d), data(0x%04x)\n", __func__, soc, (data[1]<<8) | data[0]); return min(soc, 1000); } static int fg_read_current(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data1[2], data2[2]; u32 temp, sign; s32 i_current; s32 avg_current; if (fg_i2c_read(client, CURRENT_REG, data1, 2) < 0) { pr_err("%s: Failed to read CURRENT\n", __func__); return -1; } if (fg_i2c_read(client, AVG_CURRENT_REG, data2, 2) < 0) { pr_err("%s: Failed to read AVERAGE CURRENT\n", __func__); return -1; } temp = ((data1[1]<<8) | data1[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ i_current = temp * 15625 / 100000; if (sign) i_current *= -1; temp = ((data2[1]<<8) | data2[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ avg_current = temp * 15625 / 100000; if (sign) avg_current *= -1; if (!(fuelgauge->info.pr_cnt++ % PRINT_COUNT)) { fg_test_print(client); pr_info("%s : CURRENT(%dmA), AVG_CURRENT(%dmA)\n", __func__, i_current, avg_current); fuelgauge->info.pr_cnt = 1; /* Read max17042's all registers every 5 minute. */ fg_periodic_read(client); } return i_current; } static int fg_read_avg_current(struct i2c_client *client) { u8 data2[2]; u32 temp, sign; s32 avg_current; if (fg_i2c_read(client, AVG_CURRENT_REG, data2, 2) < 0) { pr_err("%s: Failed to read AVERAGE CURRENT\n", __func__); return -1; } temp = ((data2[1]<<8) | data2[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ avg_current = temp * 15625 / 100000; if (sign) avg_current *= -1; return avg_current; } int fg_reset_soc(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; /* delay for current stablization */ msleep(500); pr_info("%s : Before quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vcell(client), fg_read_vfocv(client), fg_read_vfsoc(client), fg_read_soc(client)); pr_info("%s : Before quick-start - current(%d), avg current(%d)\n", __func__, fg_read_current(client), fg_read_avg_current(client)); if (!fuelgauge->pdata->check_jig_status()) { pr_info("%s : Return by No JIG_ON signal\n", __func__); return 0; } fg_write_register(client, CYCLES_REG, 0); if (fg_i2c_read(client, MISCCFG_REG, data, 2) < 0) { pr_err("%s: Failed to read MiscCFG\n", __func__); return -1; } data[1] |= (0x1 << 2); if (fg_i2c_write(client, MISCCFG_REG, data, 2) < 0) { pr_err("%s: Failed to write MiscCFG\n", __func__); return -1; } msleep(250); fg_write_register(client, FULLCAP_REG, fuelgauge->info.capacity); msleep(500); pr_info("%s : After quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vcell(client), fg_read_vfocv(client), fg_read_vfsoc(client), fg_read_soc(client)); pr_info("%s : After quick-start - current(%d), avg current(%d)\n", __func__, fg_read_current(client), fg_read_avg_current(client)); fg_write_register(client, CYCLES_REG, 0x00a0); /* P8 is not turned off by Quickstart @3.4V * (It's not a problem, depend on mode data) * Power off for factory test(File system, etc..) */ #if defined(CONFIG_MACH_P8_REV00) || defined(CONFIG_MACH_P8_REV01) || \ defined(CONFIG_MACH_P8LTE_REV00) #define QUICKSTART_POWER_OFF_VOLTAGE 3400 vfocv = fg_read_vfocv(client); if (vfocv < QUICKSTART_POWER_OFF_VOLTAGE) { pr_info("%s: Power off condition(%d)\n", __func__, vfocv); fullcap = fg_read_register(client, FULLCAP_REG); /* FullCAP * 0.009 */ fg_write_register(client, REMCAP_REP_REG, (u16)(fullcap * 9 / 1000)); msleep(200); pr_info("%s : new soc=%d, vfocv=%d\n", __func__, fg_read_soc(client), vfocv); } pr_info("%s : Additional step - VfOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vfocv(client), fg_read_vfsoc(client), fg_read_soc(client)); #endif return 0; } int fg_reset_capacity(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); return fg_write_register(client, DESIGNCAP_REG, fuelgauge->info.vfcapacity-1); } int fg_adjust_capacity(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 data[2]; data[0] = 0; data[1] = 0; /* 1. Write RemCapREP(05h)=0; */ if (fg_i2c_write(client, REMCAP_REP_REG, data, 2) < 0) { pr_err("%s: Failed to write RemCap_REP\n", __func__); return -1; } msleep(200); pr_info("%s : After adjust - RepSOC(%d)\n", __func__, fg_read_soc(client)); fuelgauge->info.soc_restart_flag = 1; return 0; } void fg_low_batt_compensation(struct i2c_client *client, u32 level) { int read_val; u32 temp; pr_info("%s : Adjust SOCrep to %d!!\n", __func__, level); read_val = fg_read_register(client, FULLCAP_REG); if (read_val < 0) return; if (read_val > 2) /* 3% compensation */ /* RemCapREP (05h) = FullCap(10h) x 0.0301 */ temp = read_val * (level*100 + 1) / 10000; else /* 1% compensation */ /* RemCapREP (05h) = FullCap(10h) x 0.0090 */ temp = read_val * (level*90) / 10000; fg_write_register(client, REMCAP_REP_REG, (u16)temp); /* fuelgauge->info.low_batt_comp_flag = 1; */ } static void fg_read_model_data(struct i2c_client *client) { u16 data0[16], data1[16], data2[16]; int i; int relock_check; pr_info("[FG_Model] "); /* Unlock model access */ fg_write_register(client, 0x62, 0x0059); fg_write_register(client, 0x63, 0x00C4); /* Read model data */ fg_read_16register(client, 0x80, data0); fg_read_16register(client, 0x90, data1); fg_read_16register(client, 0xa0, data2); /* Print model data */ for (i = 0; i < 16; i++) pr_info("0x%04x, ", data0[i]); for (i = 0; i < 16; i++) pr_info("0x%04x, ", data1[i]); for (i = 0; i < 16; i++) { if (i == 15) pr_info("0x%04x", data2[i]); else pr_info("0x%04x, ", data2[i]); } do { relock_check = 0; /* Lock model access */ fg_write_register(client, 0x62, 0x0000); fg_write_register(client, 0x63, 0x0000); /* Read model data again */ fg_read_16register(client, 0x80, data0); fg_read_16register(client, 0x90, data1); fg_read_16register(client, 0xa0, data2); for (i = 0; i < 16; i++) { if (data0[i] || data1[i] || data2[i]) { pr_info("%s : data is non-zero, lock again!!\n", __func__); relock_check = 1; } } } while (relock_check); } int fg_alert_init(struct i2c_client *client) { u8 misccgf_data[2]; u8 salrt_data[2]; u8 config_data[2]; u8 valrt_data[2]; u8 talrt_data[2]; u16 read_data = 0; /* Using RepSOC */ if (fg_i2c_read(client, MISCCFG_REG, misccgf_data, 2) < 0) { pr_err("%s: Failed to read MISCCFG_REG\n", __func__); return -1; } misccgf_data[0] = misccgf_data[0] & ~(0x03); if (fg_i2c_write(client, MISCCFG_REG, misccgf_data, 2) < 0) { pr_info("%s: Failed to write MISCCFG_REG\n", __func__); return -1; } /* SALRT Threshold setting */ salrt_data[1] = 0xff; salrt_data[0] = 0x01; if (fg_i2c_write(client, SALRT_THRESHOLD_REG, salrt_data, 2) < 0) { pr_info("%s: Failed to write SALRT_THRESHOLD_REG\n", __func__); return -1; } /* Reset VALRT Threshold setting (disable) */ valrt_data[1] = 0xFF; valrt_data[0] = 0x00; if (fg_i2c_write(client, VALRT_THRESHOLD_REG, valrt_data, 2) < 0) { pr_info("%s: Failed to write VALRT_THRESHOLD_REG\n", __func__); return -1; } read_data = fg_read_register(client, (u8)VALRT_THRESHOLD_REG); if (read_data != 0xff00) pr_err("%s : VALRT_THRESHOLD_REG is not valid (0x%x)\n", __func__, read_data); /* Reset TALRT Threshold setting (disable) */ talrt_data[1] = 0x7F; talrt_data[0] = 0x80; if (fg_i2c_write(client, TALRT_THRESHOLD_REG, talrt_data, 2) < 0) { pr_info("%s: Failed to write TALRT_THRESHOLD_REG\n", __func__); return -1; } read_data = fg_read_register(client, (u8)TALRT_THRESHOLD_REG); if (read_data != 0x7f80) pr_err("%s : TALRT_THRESHOLD_REG is not valid (0x%x)\n", __func__, read_data); mdelay(100); /* Enable SOC alerts */ if (fg_i2c_read(client, CONFIG_REG, config_data, 2) < 0) { pr_err("%s: Failed to read CONFIG_REG\n", __func__); return -1; } config_data[0] = config_data[0] | (0x1 << 2); if (fg_i2c_write(client, CONFIG_REG, config_data, 2) < 0) { pr_info("%s: Failed to write CONFIG_REG\n", __func__); return -1; } return 1; } static int fg_check_status_reg(struct i2c_client *client) { u8 status_data[2]; int ret = 0; /* 1. Check Smn was generatedread */ if (fg_i2c_read(client, STATUS_REG, status_data, 2) < 0) { pr_err("%s: Failed to read STATUS_REG\n", __func__); return -1; } pr_info("%s - addr(0x00), data(0x%04x)\n", __func__, (status_data[1]<<8) | status_data[0]); if (status_data[1] & (0x1 << 2)) ret = 1; /* 2. clear Status reg */ status_data[1] = 0; if (fg_i2c_write(client, STATUS_REG, status_data, 2) < 0) { pr_info("%s: Failed to write STATUS_REG\n", __func__); return -1; } return ret; } void fg_fullcharged_compensation(struct i2c_client *client, u32 is_recharging, u32 pre_update) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); static int new_fullcap_data; pr_info("%s : is_recharging(%d), pre_update(%d)\n", __func__, is_recharging, pre_update); new_fullcap_data = fg_read_register(client, FULLCAP_REG); if (new_fullcap_data < 0) new_fullcap_data = fuelgauge->info.capacity; if (new_fullcap_data > (fuelgauge->info.capacity * 110 / 100)) { pr_info("%s : [Case 1] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.capacity * 110) / 100; fg_write_register(client, REMCAP_REP_REG, (u16)(new_fullcap_data)); fg_write_register(client, FULLCAP_REG, (u16)(new_fullcap_data)); } else if (new_fullcap_data < (fuelgauge->info.capacity * 70 / 100)) { pr_info("%s : [Case 5] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.capacity * 70) / 100; fg_write_register(client, REMCAP_REP_REG, (u16)(new_fullcap_data)); fg_write_register(client, FULLCAP_REG, (u16)(new_fullcap_data)); } else { if (new_fullcap_data > (fuelgauge->info.previous_fullcap * 105 / 100)) { pr_info("%s : [Case 2] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.previous_fullcap * 105) / 100; fg_write_register(client, REMCAP_REP_REG, (u16)(new_fullcap_data)); fg_write_register(client, FULLCAP_REG, (u16)(new_fullcap_data)); } else if (new_fullcap_data < (fuelgauge->info.previous_fullcap * 90 / 100)) { pr_info("%s : [Case 3] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.previous_fullcap * 90) / 100; fg_write_register(client, REMCAP_REP_REG, (u16)(new_fullcap_data)); fg_write_register(client, FULLCAP_REG, (u16)(new_fullcap_data)); } else { pr_info("%s : [Case 4] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); } } /* 4. Write RepSOC(06h)=100%; */ fg_write_register(client, SOCREP_REG, (u16)(0x64 << 8)); /* 5. Write MixSOC(0Dh)=100%; */ fg_write_register(client, SOCMIX_REG, (u16)(0x64 << 8)); /* 6. Write AVSOC(0Eh)=100%; */ fg_write_register(client, SOCAV_REG, (u16)(0x64 << 8)); /* if pre_update case, skip updating PrevFullCAP value. */ if (!pre_update) fuelgauge->info.previous_fullcap = fg_read_register(client, FULLCAP_REG); pr_info("%s : (A) FullCap = 0x%04x, RemCap = 0x%04x\n", __func__, fg_read_register(client, FULLCAP_REG), fg_read_register(client, REMCAP_REP_REG)); fg_periodic_read(client); } void fg_check_vf_fullcap_range(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); static int new_vffullcap; u16 print_flag = 1; new_vffullcap = fg_read_register(client, FULLCAP_NOM_REG); if (new_vffullcap < 0) new_vffullcap = fuelgauge->info.vfcapacity; if (new_vffullcap > (fuelgauge->info.vfcapacity * 110 / 100)) { pr_info("%s : [Case 1] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.vfcapacity * 110) / 100; fg_write_register(client, DQACC_REG, (u16)(new_vffullcap / 4)); fg_write_register(client, DPACC_REG, (u16)0x3200); } else if (new_vffullcap < (fuelgauge->info.vfcapacity * 70 / 100)) { pr_info("%s : [Case 5] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.vfcapacity * 70) / 100; fg_write_register(client, DQACC_REG, (u16)(new_vffullcap / 4)); fg_write_register(client, DPACC_REG, (u16)0x3200); } else { if (new_vffullcap > (fuelgauge->info.previous_vffullcap * 105 / 100)) { pr_info("%s : [Case 2] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.previous_vffullcap * 105) / 100; fg_write_register(client, DQACC_REG, (u16)(new_vffullcap / 4)); fg_write_register(client, DPACC_REG, (u16)0x3200); } else if (new_vffullcap < (fuelgauge->info.previous_vffullcap * 90 / 100)) { pr_info("%s : [Case 3] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.previous_vffullcap * 90) / 100; fg_write_register(client, DQACC_REG, (u16)(new_vffullcap / 4)); fg_write_register(client, DPACC_REG, (u16)0x3200); } else { pr_info("%s : [Case 4] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); print_flag = 0; } } /* delay for register setting (dQacc, dPacc) */ if (print_flag) msleep(300); fuelgauge->info.previous_vffullcap = fg_read_register(client, FULLCAP_NOM_REG); if (print_flag) pr_info("%s : VfFullCap(0x%04x), dQacc(0x%04x), dPacc(0x%04x)\n", __func__, fg_read_register(client, FULLCAP_NOM_REG), fg_read_register(client, DQACC_REG), fg_read_register(client, DPACC_REG)); } int fg_check_cap_corruption(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); int vfsoc = fg_read_vfsoc(client); int repsoc = fg_read_soc(client); int mixcap = fg_read_register(client, REMCAP_MIX_REG); int vfocv = fg_read_register(client, VFOCV_REG); int remcap = fg_read_register(client, REMCAP_REP_REG); int fullcapacity = fg_read_register(client, FULLCAP_REG); int vffullcapacity = fg_read_register(client, FULLCAP_NOM_REG); u32 temp, temp2, new_vfocv, pr_vfocv; int ret = 0; /* If usgin Jig or low batt compensation flag is set, * then skip checking. */ if (fuelgauge->pdata->check_jig_status()) { pr_info("%s : Return by Using Jig(%d)\n", __func__, fuelgauge->pdata->check_jig_status()); return 0; } if (vfsoc < 0 || repsoc < 0 || mixcap < 0 || vfocv < 0 || remcap < 0 || fullcapacity < 0 || vffullcapacity < 0) return 0; /* Check full charge learning case. */ if (((vfsoc >= 90) && ((remcap >= (fullcapacity * 995 / 1000)) && (remcap <= (fullcapacity * 1005 / 1000)))) || fuelgauge->info.low_batt_comp_flag || fuelgauge->info.soc_restart_flag) { pr_info("%s : RemCap(%d), FullCap(%d), SOC(%d), ", __func__, (remcap/2), (fullcapacity/2), repsoc); pr_info("low_batt_comp_flag(%d), soc_restart_flag(%d)\n", fuelgauge->info.low_batt_comp_flag, fuelgauge->info.soc_restart_flag); fuelgauge->info.previous_repsoc = repsoc; fuelgauge->info.previous_remcap = remcap; fuelgauge->info.previous_fullcapacity = fullcapacity; if (fuelgauge->info.soc_restart_flag) fuelgauge->info.soc_restart_flag = 0; ret = 1; } /* ocv calculation for print */ temp = (vfocv & 0xFFF) * 78125; pr_vfocv = temp / 1000000; temp = ((vfocv & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; pr_vfocv += (temp2 << 4); /* MixCap differ is greater than 265mAh */ if ((((vfsoc+5) < fuelgauge->info.previous_vfsoc) || (vfsoc > (fuelgauge->info.previous_vfsoc+5))) || (((repsoc+5) < fuelgauge->info.previous_repsoc) || (repsoc > (fuelgauge->info.previous_repsoc+5))) || (((mixcap+530) < fuelgauge->info.previous_mixcap) || (mixcap > (fuelgauge->info.previous_mixcap+530)))) { fg_periodic_read(client); pr_info("[FG_Recovery] (B) VfSOC(%d), prevVfSOC(%d), RepSOC(%d), prevRepSOC(%d), MixCap(%d), prevMixCap(%d),VfOCV(0x%04x, %d)\n", vfsoc, fuelgauge->info.previous_vfsoc, repsoc, fuelgauge->info.previous_repsoc, (mixcap/2), (fuelgauge->info.previous_mixcap/2), vfocv, pr_vfocv); mutex_lock(&fuelgauge->fg_lock); fg_write_and_verify_register(client, REMCAP_MIX_REG, fuelgauge->info.previous_mixcap); fg_write_register(client, VFOCV_REG, fuelgauge->info.previous_vfocv); mdelay(200); fg_write_and_verify_register(client, REMCAP_REP_REG, fuelgauge->info.previous_remcap); vfsoc = fg_read_register(client, VFSOC_REG); fg_write_register(client, 0x60, 0x0080); fg_write_and_verify_register(client, 0x48, vfsoc); fg_write_register(client, 0x60, 0x0000); fg_write_and_verify_register(client, 0x45, (fuelgauge->info.previous_vfcapacity / 4)); fg_write_and_verify_register(client, 0x46, 0x3200); fg_write_and_verify_register(client, FULLCAP_REG, fuelgauge->info.previous_fullcapacity); fg_write_and_verify_register(client, FULLCAP_NOM_REG, fuelgauge->info.previous_vfcapacity); mutex_unlock(&fuelgauge->fg_lock); msleep(200); /* ocv calculation for print */ new_vfocv = fg_read_register(client, VFOCV_REG); temp = (new_vfocv & 0xFFF) * 78125; pr_vfocv = temp / 1000000; temp = ((new_vfocv & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; pr_vfocv += (temp2 << 4); pr_info("[FG_Recovery] (A) newVfSOC(%d), newRepSOC(%d), newMixCap(%d), newVfOCV(0x%04x, %d)\n", fg_read_vfsoc(client), fg_read_soc(client), (fg_read_register(client, REMCAP_MIX_REG)/2), new_vfocv, pr_vfocv); fg_periodic_read(client); ret = 1; } else { fuelgauge->info.previous_vfsoc = vfsoc; fuelgauge->info.previous_repsoc = repsoc; fuelgauge->info.previous_remcap = remcap; fuelgauge->info.previous_mixcap = mixcap; fuelgauge->info.previous_fullcapacity = fullcapacity; fuelgauge->info.previous_vfcapacity = vffullcapacity; fuelgauge->info.previous_vfocv = vfocv; } return ret; } void fg_set_full_charged(struct i2c_client *client) { pr_info("[FG_Set_Full] (B) FullCAP(%d), RemCAP(%d)\n", (fg_read_register(client, FULLCAP_REG)/2), (fg_read_register(client, REMCAP_REP_REG)/2)); fg_write_register(client, FULLCAP_REG, (u16)fg_read_register(client, REMCAP_REP_REG)); pr_info("[FG_Set_Full] (A) FullCAP(%d), RemCAP(%d)\n", (fg_read_register(client, FULLCAP_REG)/2), (fg_read_register(client, REMCAP_REP_REG)/2)); } static void display_low_batt_comp_cnt(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u8 type_str[10]; if (fg_get_battery_type(client) == SDI_BATTERY_TYPE) sprintf(type_str, "SDI"); else if (fg_get_battery_type(client) == ATL_BATTERY_TYPE) sprintf(type_str, "ATL"); else sprintf(type_str, "Unknown"); pr_info("Check Array(%s) : [%d, %d], [%d, %d], ", type_str, fuelgauge->info.low_batt_comp_cnt[0][0], fuelgauge->info.low_batt_comp_cnt[0][1], fuelgauge->info.low_batt_comp_cnt[1][0], fuelgauge->info.low_batt_comp_cnt[1][1]); pr_info("[%d, %d], [%d, %d], [%d, %d]\n", fuelgauge->info.low_batt_comp_cnt[2][0], fuelgauge->info.low_batt_comp_cnt[2][1], fuelgauge->info.low_batt_comp_cnt[3][0], fuelgauge->info.low_batt_comp_cnt[3][1], fuelgauge->info.low_batt_comp_cnt[4][0], fuelgauge->info.low_batt_comp_cnt[4][1]); } static void add_low_batt_comp_cnt(struct i2c_client *client, int range, int level) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); int i; int j; /* Increase the requested count value, and reset others. */ fuelgauge->info.low_batt_comp_cnt[range-1][level/2]++; for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) { for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) { if (i == range-1 && j == level/2) continue; else fuelgauge->info.low_batt_comp_cnt[i][j] = 0; } } } void prevent_early_poweroff(struct i2c_client *client, int vcell, int *fg_soc) { int repsoc, repsoc_data = 0; int read_val; u8 data[2]; if (fg_i2c_read(client, SOCREP_REG, data, 2) < 0) { pr_err("%s: Failed to read SOCREP\n", __func__); return; } repsoc = data[1]; repsoc_data = ((data[1] << 8) | data[0]); if (repsoc_data > POWER_OFF_SOC_HIGH_MARGIN) return; pr_info("%s : soc=%d%%(0x%04x), vcell=%d\n", __func__, repsoc, repsoc_data, vcell); if (vcell > POWER_OFF_VOLTAGE_HIGH_MARGIN) { read_val = fg_read_register(client, FULLCAP_REG); /* FullCAP * 0.013 */ fg_write_register(client, REMCAP_REP_REG, (u16)(read_val * 13 / 1000)); msleep(200); *fg_soc = fg_read_soc(client); pr_info("%s : new soc=%d, vcell=%d\n", __func__, *fg_soc, vcell); } } void reset_low_batt_comp_cnt(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); memset(fuelgauge->info.low_batt_comp_cnt, 0, sizeof(fuelgauge->info.low_batt_comp_cnt)); } static int check_low_batt_comp_condition( struct i2c_client *client, int *nLevel) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); int i; int j; int ret = 0; for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) { for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) { if (fuelgauge->info.low_batt_comp_cnt[i][j] >= MAX_LOW_BATT_CHECK_CNT) { display_low_batt_comp_cnt(client); ret = 1; *nLevel = j*2 + 1; break; } } } return ret; } static int get_low_batt_threshold(struct i2c_client *client, int range, int level, int nCurrent) { int ret = 0; if (fg_get_battery_type(client) == SDI_BATTERY_TYPE) { switch (range) { /* P4W & P8 needs one more level */ #if defined(CONFIG_MACH_P4W_REV00) || defined(CONFIG_MACH_P4W_REV01) || \ defined(CONFIG_MACH_P8_REV00) || defined(CONFIG_MACH_P8_REV01) || \ defined(CONFIG_MACH_P8LTE_REV00) case 5: if (level == 1) ret = SDI_Range5_1_Offset + ((nCurrent * SDI_Range5_1_Slope) / 1000); else if (level == 3) ret = SDI_Range5_3_Offset + ((nCurrent * SDI_Range5_3_Slope) / 1000); break; #endif case 4: if (level == 1) ret = SDI_Range4_1_Offset + ((nCurrent * SDI_Range4_1_Slope) / 1000); else if (level == 3) ret = SDI_Range4_3_Offset + ((nCurrent * SDI_Range4_3_Slope) / 1000); break; case 3: if (level == 1) ret = SDI_Range3_1_Offset + ((nCurrent * SDI_Range3_1_Slope) / 1000); else if (level == 3) ret = SDI_Range3_3_Offset + ((nCurrent * SDI_Range3_3_Slope) / 1000); break; case 2: if (level == 1) ret = SDI_Range2_1_Offset + ((nCurrent * SDI_Range2_1_Slope) / 1000); else if (level == 3) ret = SDI_Range2_3_Offset + ((nCurrent * SDI_Range2_3_Slope) / 1000); break; case 1: if (level == 1) ret = SDI_Range1_1_Offset + ((nCurrent * SDI_Range1_1_Slope) / 1000); else if (level == 3) ret = SDI_Range1_3_Offset + ((nCurrent * SDI_Range1_3_Slope) / 1000); break; default: break; } } else if (fg_get_battery_type(client) == ATL_BATTERY_TYPE) { switch (range) { case 4: if (level == 1) ret = ATL_Range4_1_Offset + ((nCurrent * ATL_Range4_1_Slope) / 1000); else if (level == 3) ret = ATL_Range4_3_Offset + ((nCurrent * ATL_Range4_3_Slope) / 1000); break; case 3: if (level == 1) ret = ATL_Range3_1_Offset + ((nCurrent * ATL_Range3_1_Slope) / 1000); else if (level == 3) ret = ATL_Range3_3_Offset + ((nCurrent * ATL_Range3_3_Slope) / 1000); break; case 2: if (level == 1) ret = ATL_Range2_1_Offset + ((nCurrent * ATL_Range2_1_Slope) / 1000); else if (level == 3) ret = ATL_Range2_3_Offset + ((nCurrent * ATL_Range2_3_Slope) / 1000); break; case 1: if (level == 1) ret = ATL_Range1_1_Offset + ((nCurrent * ATL_Range1_1_Slope) / 1000); else if (level == 3) ret = ATL_Range1_3_Offset + ((nCurrent * ATL_Range1_3_Slope) / 1000); break; default: break; } } return ret; } int low_batt_compensation(struct i2c_client *client, int fg_soc, int fg_vcell, int fg_current) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); int fg_avg_current = 0; int fg_min_current = 0; int new_level = 0; int bCntReset = 0; /* Not charging, flag is none, Under 3.60V or 3.45V */ if (!fuelgauge->info.low_batt_comp_flag && (fg_vcell <= fuelgauge->info.check_start_vol)) { fg_avg_current = fg_read_avg_current(client); fg_min_current = min(fg_avg_current, fg_current); if (fg_min_current < CURRENT_RANGE_MAX) { if (fg_soc >= 2 && fg_vcell < get_low_batt_threshold(client, CURRENT_RANGE_MAX_NUM, 1, fg_min_current)) add_low_batt_comp_cnt(client, CURRENT_RANGE_MAX_NUM, 1); else if (fg_soc >= 4 && fg_vcell < get_low_batt_threshold(client, CURRENT_RANGE_MAX_NUM, 3, fg_min_current)) add_low_batt_comp_cnt(client, CURRENT_RANGE_MAX_NUM, 3); else bCntReset = 1; } /* P4W & P8 needs more level */ #if defined(CONFIG_MACH_P4W_REV00) || defined(CONFIG_MACH_P4W_REV01) || \ defined(CONFIG_MACH_P8_REV00) || defined(CONFIG_MACH_P8_REV01) || \ defined(CONFIG_MACH_P8LTE_REV00) else if (fg_min_current >= CURRENT_RANGE5 && fg_min_current < CURRENT_RANGE4) { if (fg_soc >= 2 && fg_vcell < get_low_batt_threshold(client, 4, 1, fg_min_current)) add_low_batt_comp_cnt(client, 4, 1); else if (fg_soc >= 4 && fg_vcell < get_low_batt_threshold(client, 4, 3, fg_min_current)) add_low_batt_comp_cnt(client, 4, 3); else bCntReset = 1; } #endif else if (fg_min_current >= CURRENT_RANGE4 && fg_min_current < CURRENT_RANGE3) { if (fg_soc >= 2 && fg_vcell < get_low_batt_threshold(client, 3, 1, fg_min_current)) add_low_batt_comp_cnt(client, 3, 1); else if (fg_soc >= 4 && fg_vcell < get_low_batt_threshold(client, 3, 3, fg_min_current)) add_low_batt_comp_cnt(client, 3, 3); else bCntReset = 1; } else if (fg_min_current >= CURRENT_RANGE3 && fg_min_current < CURRENT_RANGE2) { if (fg_soc >= 2 && fg_vcell < get_low_batt_threshold(client, 2, 1, fg_min_current)) add_low_batt_comp_cnt(client, 2, 1); else if (fg_soc >= 4 && fg_vcell < get_low_batt_threshold(client, 2, 3, fg_min_current)) add_low_batt_comp_cnt(client, 2, 3); else bCntReset = 1; } else if (fg_min_current >= CURRENT_RANGE2 && fg_min_current < CURRENT_RANGE1) { if (fg_soc >= 2 && fg_vcell < get_low_batt_threshold(client, 1, 1, fg_min_current)) add_low_batt_comp_cnt(client, 1, 1); else if (fg_soc >= 4 && fg_vcell < get_low_batt_threshold(client, 1, 3, fg_min_current)) add_low_batt_comp_cnt(client, 1, 3); else bCntReset = 1; } if (check_low_batt_comp_condition(client, &new_level)) { #if defined(CONFIG_MACH_P8_REV00) || \ defined(CONFIG_MACH_P8_REV01) || \ defined(CONFIG_MACH_P8LTE_REV00) /* Disable 3% low battery compensation (only for P8s) */ /* duplicated action with 1% low battery compensation */ if (new_level < 2) #endif fg_low_batt_compensation(client, new_level); reset_low_batt_comp_cnt(client); } if (bCntReset) reset_low_batt_comp_cnt(client); /* if compensation finished, then read SOC again!!*/ if (fuelgauge->info.low_batt_comp_flag) { pr_info("%s : MIN_CURRENT(%d), AVG_CURRENT(%d), CURRENT(%d), SOC(%d), VCELL(%d)\n", __func__, fg_min_current, fg_avg_current, fg_current, fg_soc, fg_vcell); #if defined(CONFIG_MACH_P8_REV00) || \ defined(CONFIG_MACH_P8_REV01) || \ defined(CONFIG_MACH_P8LTE_REV00) /* Do not update soc right after low battery compensation */ /* to prevent from powering-off suddenly (only for P8s) */ pr_info("%s : SOC is set to %d\n", __func__, fg_read_soc(client)); #else fg_soc = fg_read_soc(client); pr_info("%s : SOC is set to %d\n", __func__, fg_soc); #endif } } #if defined(CONFIG_MACH_P4W_REV00) || defined(CONFIG_MACH_P4W_REV01) || \ defined(CONFIG_MACH_P2_REV00) || defined(CONFIG_MACH_P2_REV01) || \ defined(CONFIG_MACH_P2_REV02) /* Prevent power off over 3500mV */ prevent_early_poweroff(fg_vcell, &fg_soc); #endif return fg_soc; } static void fg_set_battery_type(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); u16 data; u8 type_str[10]; data = fg_read_register(client, DESIGNCAP_REG); if ((data == sdi_vfcapacity) || (data == sdi_vfcapacity-1)) fuelgauge->info.battery_type = SDI_BATTERY_TYPE; else if ((data == atl_vfcapacity) || (data == atl_vfcapacity-1)) fuelgauge->info.battery_type = ATL_BATTERY_TYPE; else { pr_info("%s : Unknown battery is set to SDI type.\n", __func__); fuelgauge->info.battery_type = SDI_BATTERY_TYPE; } if (fuelgauge->info.battery_type == SDI_BATTERY_TYPE) sprintf(type_str, "SDI"); else if (fuelgauge->info.battery_type == ATL_BATTERY_TYPE) sprintf(type_str, "ATL"); else sprintf(type_str, "Unknown"); pr_info("%s : DesignCAP(0x%04x), Battery type(%s)\n", __func__, data, type_str); switch (fuelgauge->info.battery_type) { case ATL_BATTERY_TYPE: fuelgauge->info.capacity = atl_capacity; fuelgauge->info.vfcapacity = atl_vfcapacity; break; case SDI_BATTERY_TYPE: default: fuelgauge->info.capacity = sdi_capacity; fuelgauge->info.vfcapacity = sdi_vfcapacity; break; } /* If not initialized yet, then init threshold values. */ if (!fuelgauge->info.check_start_vol) { if (fuelgauge->info.battery_type == SDI_BATTERY_TYPE) fuelgauge->info.check_start_vol = sdi_low_bat_comp_start_vol; else if (fuelgauge->info.battery_type == ATL_BATTERY_TYPE) fuelgauge->info.check_start_vol = atl_low_bat_comp_start_vol; } } int get_fuelgauge_value(struct i2c_client *client, int data) { int ret; switch (data) { case FG_LEVEL: ret = fg_read_soc(client); break; case FG_TEMPERATURE: ret = fg_read_temp(client); break; case FG_VOLTAGE: ret = fg_read_vcell(client); break; case FG_CURRENT: ret = fg_read_current(client); break; case FG_CURRENT_AVG: ret = fg_read_avg_current(client); break; case FG_BATTERY_TYPE: ret = fg_get_battery_type(client); break; case FG_CHECK_STATUS: ret = fg_check_status_reg(client); break; case FG_VF_SOC: ret = fg_read_vfsoc(client); break; default: ret = -1; break; } return ret; } static bool check_UV_charging_case(struct i2c_client *client) { int fg_vcell = get_fuelgauge_value(client, FG_VOLTAGE); int fg_current = get_fuelgauge_value(client, FG_CURRENT); int threshold = 0; if (get_fuelgauge_value(client, FG_BATTERY_TYPE) == SDI_BATTERY_TYPE) threshold = 3300 + ((fg_current * 17) / 100); else if (get_fuelgauge_value(client, FG_BATTERY_TYPE) == ATL_BATTERY_TYPE) threshold = 3300 + ((fg_current * 13) / 100); if (fg_vcell <= threshold) return 1; else return 0; } static int get_fuelgauge_soc(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); union power_supply_propval value; int fg_soc; int fg_vfsoc; int fg_vcell; int fg_current; int avg_current; int recover_flag = 0; recover_flag = fg_check_cap_corruption(client); /* check VFcapacity every five minutes */ if (!(fuelgauge->info.fg_chk_cnt++ % 10)) { fg_check_vf_fullcap_range(client); fuelgauge->info.fg_chk_cnt = 1; } fg_soc = get_fuelgauge_value(client, FG_LEVEL); if (fg_soc < 0) { pr_info("Can't read soc!!!"); fg_soc = fuelgauge->info.soc; } if (!fuelgauge->pdata->check_jig_status() && !fuelgauge->info.low_batt_comp_flag) { if (((fg_soc+5) < fuelgauge->info.previous_repsoc) || (fg_soc > (fuelgauge->info.previous_repsoc+5))) fuelgauge->info.fg_skip = 1; } /* skip one time (maximum 30 seconds) because of corruption. */ if (fuelgauge->info.fg_skip) { pr_info("%s: skip update until corruption check " "is done (fg_skip_cnt:%d)\n", __func__, ++fuelgauge->info.fg_skip_cnt); fg_soc = fuelgauge->info.soc; if (recover_flag || fuelgauge->info.fg_skip_cnt > 10) { fuelgauge->info.fg_skip = 0; fuelgauge->info.fg_skip_cnt = 0; } } if (fuelgauge->info.low_batt_boot_flag) { fg_soc = 0; if (fuelgauge->pdata->check_cable_callback() != POWER_SUPPLY_TYPE_BATTERY && !check_UV_charging_case(client)) { fg_adjust_capacity(client); fuelgauge->info.low_batt_boot_flag = 0; } if (fuelgauge->pdata->check_cable_callback() == POWER_SUPPLY_TYPE_BATTERY) fuelgauge->info.low_batt_boot_flag = 0; } fg_vcell = get_fuelgauge_value(client, FG_VOLTAGE); fg_current = get_fuelgauge_value(client, FG_CURRENT); avg_current = get_fuelgauge_value(client, FG_CURRENT_AVG); fg_vfsoc = get_fuelgauge_value(client, FG_VF_SOC); psy_do_property("battery", get, POWER_SUPPLY_PROP_CHARGE_TYPE, value); /* P4-Creative does not set full flag by force */ #if !defined(CONFIG_MACH_P4W_REV00) && !defined(CONFIG_MACH_P4W_REV01) /* Algorithm for reducing time to fully charged (from MAXIM) */ if (value.intval != SEC_BATTERY_CHARGING_NONE && value.intval != SEC_BATTERY_CHARGING_RECHARGING && fuelgauge->cable_type != POWER_SUPPLY_TYPE_USB && /* Skip when first check after boot up */ !fuelgauge->info.is_first_check && (fg_vfsoc > VFSOC_FOR_FULLCAP_LEARNING && (fg_current > LOW_CURRENT_FOR_FULLCAP_LEARNING && fg_current < HIGH_CURRENT_FOR_FULLCAP_LEARNING) && (avg_current > LOW_AVGCURRENT_FOR_FULLCAP_LEARNING && avg_current < HIGH_AVGCURRENT_FOR_FULLCAP_LEARNING))) { if (fuelgauge->info.full_check_flag == 2) { pr_info("%s: force fully charged SOC !! (%d)", __func__, fuelgauge->info.full_check_flag); fg_set_full_charged(client); fg_soc = get_fuelgauge_value(client, FG_LEVEL); } else if (fuelgauge->info.full_check_flag < 2) pr_info("%s: full_check_flag (%d)", __func__, fuelgauge->info.full_check_flag); /* prevent overflow */ if (fuelgauge->info.full_check_flag++ > 10000) fuelgauge->info.full_check_flag = 3; } else fuelgauge->info.full_check_flag = 0; #endif /* Checks vcell level and tries to compensate SOC if needed.*/ /* If jig cable is connected, then skip low batt compensation check. */ if (!fuelgauge->pdata->check_jig_status() && value.intval == SEC_BATTERY_CHARGING_NONE) fg_soc = low_batt_compensation( client, fg_soc, fg_vcell, fg_current); if (fuelgauge->info.is_first_check) fuelgauge->info.is_first_check = false; fuelgauge->info.soc = fg_soc; return fg_soc; } static void full_comp_work_handler(struct work_struct *work) { struct sec_fg_info *fg_info = container_of(work, struct sec_fg_info, full_comp_work.work); struct sec_fuelgauge_info *fuelgauge = container_of(fg_info, struct sec_fuelgauge_info, info); int avg_current; union power_supply_propval value; avg_current = get_fuelgauge_value(fuelgauge->client, FG_CURRENT_AVG); psy_do_property("battery", get, POWER_SUPPLY_PROP_CHARGE_TYPE, value); if (avg_current >= 25) { cancel_delayed_work(&fuelgauge->info.full_comp_work); schedule_delayed_work(&fuelgauge->info.full_comp_work, 100); } else { pr_info("%s: full charge compensation start (avg_current %d)\n", __func__, avg_current); fg_fullcharged_compensation(fuelgauge->client, (int)(value.intval == SEC_BATTERY_CHARGING_RECHARGING), 0); } } bool sec_hal_fg_init(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); fuelgauge->info.is_first_check = true; fg_set_battery_type(client); /* Init parameters to prevent wrong compensation. */ fuelgauge->info.previous_fullcap = fg_read_register(client, FULLCAP_REG); fuelgauge->info.previous_vffullcap = fg_read_register(client, FULLCAP_NOM_REG); /* Init FullCAP of first full charging. */ fuelgauge->info.full_charged_cap = fuelgauge->info.previous_fullcap; fuelgauge->info.previous_vfsoc = fg_read_vfsoc(client); fuelgauge->info.previous_repsoc = fg_read_soc(client); fuelgauge->info.previous_remcap = fg_read_register(client, REMCAP_REP_REG); fuelgauge->info.previous_mixcap = fg_read_register(client, REMCAP_MIX_REG); fuelgauge->info.previous_vfocv = fg_read_register(client, VFOCV_REG); fuelgauge->info.previous_fullcapacity = fuelgauge->info.previous_fullcap; fuelgauge->info.previous_vfcapacity = fuelgauge->info.previous_vffullcap; fg_read_model_data(client); fg_periodic_read(client); if (fuelgauge->pdata->check_cable_callback() == POWER_SUPPLY_TYPE_BATTERY && check_UV_charging_case(client)) fuelgauge->info.low_batt_boot_flag = 1; INIT_DELAYED_WORK(&fuelgauge->info.full_comp_work, full_comp_work_handler); return true; } bool sec_hal_fg_suspend(struct i2c_client *client) { return true; } bool sec_hal_fg_resume(struct i2c_client *client) { return true; } bool sec_hal_fg_fuelalert_init(struct i2c_client *client, int soc) { return true; } bool sec_hal_fg_is_fuelalerted(struct i2c_client *client) { return false; } bool sec_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted) { return true; } bool sec_hal_fg_full_charged(struct i2c_client *client) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); union power_supply_propval value; psy_do_property("battery", get, POWER_SUPPLY_PROP_CHARGE_TYPE, value); /* full charge compensation algorithm by MAXIM */ fg_fullcharged_compensation(client, (int)(value.intval == SEC_BATTERY_CHARGING_RECHARGING), 1); cancel_delayed_work(&fuelgauge->info.full_comp_work); schedule_delayed_work(&fuelgauge->info.full_comp_work, 100); return false; } bool sec_hal_fg_reset(struct i2c_client *client) { if (!fg_reset_soc(client)) return true; else return false; } bool sec_hal_fg_get_property(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = get_fuelgauge_value(client, FG_VOLTAGE); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case SEC_BATTEY_VOLTAGE_AVERAGE: val->intval = 0; break; case SEC_BATTEY_VOLTAGE_OCV: val->intval = fg_read_vfocv(client); break; } break; /* Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = get_fuelgauge_value(client, FG_CURRENT); break; /* Average Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = get_fuelgauge_value(client, FG_CURRENT_AVG); break; /* SOC (%) */ case POWER_SUPPLY_PROP_CAPACITY: val->intval = get_fuelgauge_soc(client); break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = get_fuelgauge_value(client, FG_TEMPERATURE); break; default: return false; } return true; } bool sec_hal_fg_set_property(struct i2c_client *client, enum power_supply_property psp, const union power_supply_propval *val) { struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: if (val->intval != POWER_SUPPLY_TYPE_BATTERY) { fuelgauge->info.low_batt_comp_flag = 0; reset_low_batt_comp_cnt(client); } break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: break; default: return false; } return true; } ssize_t sec_hal_fg_show_attrs(struct device *dev, const ptrdiff_t offset, char *buf) { struct power_supply *psy = dev_get_drvdata(dev); struct sec_fuelgauge_info *fg = container_of(psy, struct sec_fuelgauge_info, psy_fg); int i = 0; char *str = NULL; switch (offset) { /* case FG_REG: */ /* break; */ case FG_DATA: i += scnprintf(buf + i, PAGE_SIZE - i, "%02x%02x\n", fg->reg_data[1], fg->reg_data[0]); break; case FG_REGS: str = kzalloc(sizeof(char)*1024, GFP_KERNEL); if (!str) return -ENOMEM; fg_read_regs(fg->client, str); pr_debug("%s: %s\n", __func__, str); i += scnprintf(buf + i, PAGE_SIZE - i, "%s\n", str); kfree(str); break; default: i = -EINVAL; break; } return i; } ssize_t sec_hal_fg_store_attrs(struct device *dev, const ptrdiff_t offset, const char *buf, size_t count) { struct power_supply *psy = dev_get_drvdata(dev); struct sec_fuelgauge_info *fg = container_of(psy, struct sec_fuelgauge_info, psy_fg); int ret = 0; int x = 0; u8 data[2]; switch (offset) { case FG_REG: if (sscanf(buf, "%x\n", &x) == 1) { fg->reg_addr = x; fg_i2c_read(fg->client, fg->reg_addr, fg->reg_data, 2); pr_debug("%s: (read) addr = 0x%x, data = 0x%02x%02x\n", __func__, fg->reg_addr, fg->reg_data[1], fg->reg_data[0]); } ret = count; break; case FG_DATA: if (sscanf(buf, "%x\n", &x) == 1) { data[0] = (x & 0xFF00) >> 8; data[1] = (x & 0x00FF); pr_debug("%s: (write) addr = 0x%x, data = 0x%02x%02x\n", __func__, fg->reg_addr, data[1], data[0]); fg_i2c_write(fg->client, fg->reg_addr, data, 2); } ret = count; break; default: ret = -EINVAL; break; } return ret; } #endif