/* * Copyright (C) 2012 Samsung Electronics Co.Ltd * Authors: * Eunchul Kim * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include "drmP.h" #include "drm_backlight.h" #include #include #include #include #include #include #include #include "regs-gsc.h" #include #include "exynos_drm_drv.h" #include "exynos_drm_gem.h" #include "exynos_drm_ipp.h" #include "exynos_drm_gsc.h" /* * GSC is stand for General SCaler and * supports image scaler/rotator and input/output DMA operations. * input DMA reads image data from the memory. * output DMA writes image data to memory. * GSC supports image rotation and image effect functions. */ #define GSC_MAX_DEVS 4 #define GSC_MAX_SRC 8 #define GSC_MAX_DST 32 #define GSC_RESET_TIMEOUT 50 #ifdef CONFIG_SLP_DISP_DEBUG #define GSC_MAX_REG 128 #define GSC_BASE_REG(id) (0x13E00000 + (0x10000 * id)) #endif #define GSC_CLK_RATE 166750000 #define GSC_BUF_STOP 1 #define GSC_BUF_START 2 #define GSC_REG_SZ 32 #define GSC_WIDTH_ITU_709 1280 #define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev)) #define get_ctx_from_ippdrv(ippdrv) container_of(ippdrv,\ struct gsc_context, ippdrv); #define gsc_read(offset) readl(ctx->regs + (offset)); #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)); enum gsc_wb { GSC_WB_NONE, GSC_WB_A, GSC_WB_B, }; /* * A structure of scaler. * * @range: narrow, wide. * @pre_shfactor: pre sclaer shift factor. * @pre_hratio: horizontal ratio of the prescaler. * @pre_vratio: vertical ratio of the prescaler. * @main_hratio: the main scaler's horizontal ratio. * @main_vratio: the main scaler's vertical ratio. */ struct gsc_scaler { bool range; u32 pre_shfactor; u32 pre_hratio; u32 pre_vratio; unsigned long main_hratio; unsigned long main_vratio; }; /* * A structure of scaler capability. * * find user manual 49.2 features. * @tile_w: tile mode or rotation width. * @tile_h: tile mode or rotation height. * @w: other cases width. * @h: other cases height. */ struct gsc_capability { /* tile or rotation */ u32 tile_w; u32 tile_h; /* other cases */ u32 w; u32 h; }; /* * A structure of gsc context. * * @ippdrv: prepare initialization using ippdrv. * @regs_res: register resources. * @regs: memory mapped io registers. * @lock: locking of operations. * @gsc_clk: gsc clock. * @sc: scaler infomations. * @capa: scaler capability. * @id: gsc id. * @irq: irq number. * @suspended: qos operations. */ struct gsc_context { struct exynos_drm_ippdrv ippdrv; struct resource *regs_res; void __iomem *regs; struct mutex lock; struct clk *gsc_clk; struct gsc_scaler sc; struct gsc_capability *capa; int id; int irq; bool suspended; }; struct gsc_capability gsc51_capa[GSC_MAX_DEVS] = { { .tile_w = 2048, .tile_h = 2048, .w = 4800, .h = 3344, }, { .tile_w = 2048, .tile_h = 2048, .w = 4800, .h = 3344, }, { .tile_w = 2048, .tile_h = 2048, .w = 4800, .h = 3344, }, { .tile_w = 2048, .tile_h = 2048, .w = 4800, .h = 3344, }, }; static int gsc_sw_reset(struct gsc_context *ctx) { u32 cfg; int count = GSC_RESET_TIMEOUT; DRM_DEBUG_KMS("%s\n", __func__); /* s/w reset */ cfg = (GSC_SW_RESET_SRESET); gsc_write(cfg, GSC_SW_RESET); /* wait s/w reset complete */ while (count--) { cfg = gsc_read(GSC_SW_RESET); if (!cfg) break; usleep_range(1000, 2000); } if (cfg) { DRM_ERROR("failed to reset gsc h/w.\n"); return -EBUSY; } /* display fifo reset */ cfg = readl(SYSREG_GSCBLK_CFG0); /* * GSCBLK Pixel asyncy FIFO S/W reset sequence * set PXLASYNC_SW_RESET as 0 then, * set PXLASYNC_SW_RESET as 1 again */ cfg &= ~GSC_PXLASYNC_RST(ctx->id); writel(cfg, SYSREG_GSCBLK_CFG0); cfg |= GSC_PXLASYNC_RST(ctx->id); writel(cfg, SYSREG_GSCBLK_CFG0); /* pixel async reset */ cfg = readl(SYSREG_DISP1BLK_CFG); /* * DISPBLK1 FIFO S/W reset sequence * set FIFORST_DISP1 as 0 then, * set FIFORST_DISP1 as 1 again */ cfg &= ~FIFORST_DISP1; writel(cfg, SYSREG_DISP1BLK_CFG); cfg |= FIFORST_DISP1; writel(cfg, SYSREG_DISP1BLK_CFG); /* reset sequence */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); cfg |= (GSC_IN_BASE_ADDR_MASK | GSC_IN_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); cfg |= (GSC_OUT_BASE_ADDR_MASK | GSC_OUT_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); return 0; } static void gsc_set_gscblk_fimd_wb(struct gsc_context *ctx, bool enable) { u32 gscblk_cfg; DRM_DEBUG_KMS("%s\n", __func__); gscblk_cfg = readl(SYSREG_GSCBLK_CFG1); if (enable) gscblk_cfg |= GSC_BLK_DISP1WB_DEST(ctx->id) | GSC_BLK_GSCL_WB_IN_SRC_SEL(ctx->id) | GSC_BLK_SW_RESET_WB_DEST(ctx->id); else gscblk_cfg |= GSC_BLK_PXLASYNC_LO_MASK_WB(ctx->id); writel(gscblk_cfg, SYSREG_GSCBLK_CFG1); } static void gsc_handle_irq(struct gsc_context *ctx, bool enable, bool overflow, bool done) { u32 cfg; DRM_DEBUG_KMS("%s:enable[%d]overflow[%d]level[%d]\n", __func__, enable, overflow, done); cfg = gsc_read(GSC_IRQ); cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK); if (enable) { cfg |= GSC_IRQ_ENABLE; if (overflow) cfg &= ~GSC_IRQ_OR_MASK; if (done) cfg &= ~GSC_IRQ_FRMDONE_MASK; } else cfg &= ~GSC_IRQ_ENABLE; gsc_write(cfg, GSC_IRQ); } static int gsc_set_planar_addr(struct drm_exynos_ipp_buf_info *buf_info, u32 fmt, struct drm_exynos_sz *sz) { dma_addr_t *y_addr = &buf_info->base[EXYNOS_DRM_PLANAR_Y]; dma_addr_t *cb_addr = &buf_info->base[EXYNOS_DRM_PLANAR_CB]; dma_addr_t *cr_addr = &buf_info->base[EXYNOS_DRM_PLANAR_CR]; uint64_t y_ofs, cb_ofs, cr_ofs; /* * ToDo: check the buffer size between gem allocated buffers * and each planar size. */ switch (fmt) { case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: y_ofs = sz->hsize * sz->vsize; cb_ofs = y_ofs >> 1; cr_ofs = 0; break; case DRM_FORMAT_NV12M: y_ofs = ALIGN(ALIGN(sz->hsize, 16) * ALIGN(sz->vsize, 16), SZ_2K); cb_ofs = ALIGN(ALIGN(sz->hsize, 16) * ALIGN(sz->vsize >> 1, 16), SZ_2K); cr_ofs = 0; break; case DRM_FORMAT_NV12MT: y_ofs = ALIGN(ALIGN(sz->hsize, 128) * ALIGN(sz->vsize, 32), SZ_8K); cb_ofs = ALIGN(ALIGN(sz->hsize, 128) * ALIGN(sz->vsize >> 1, 32), SZ_8K); cr_ofs = 0; break; case DRM_FORMAT_YUV410: case DRM_FORMAT_YVU410: case DRM_FORMAT_YUV411: case DRM_FORMAT_YVU411: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU422: case DRM_FORMAT_YUV444: case DRM_FORMAT_YVU444: case DRM_FORMAT_YUV420M: y_ofs = sz->hsize * sz->vsize; cb_ofs = cr_ofs = y_ofs >> 2; break; default: y_ofs = cb_ofs = cr_ofs = 0; break; } if (y_ofs && *y_addr) { *cb_addr = *y_addr + y_ofs; if (cb_ofs && *cb_addr) *cr_addr = *cb_addr + cb_ofs; } return 0; } static int gsc_src_set_fmt(struct device *dev, u32 fmt) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:fmt[0x%x]\n", __func__, fmt); cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK | GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK | GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_IN_RGB565; break; case DRM_FORMAT_XRGB8888: cfg |= GSC_IN_XRGB8888; break; case DRM_FORMAT_YUYV: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P); break; case DRM_FORMAT_YUV422: cfg |= GSC_IN_YUV422_3P; break; case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: cfg |= GSC_IN_YUV420_3P; break; case DRM_FORMAT_NV12: case DRM_FORMAT_NV12M: case DRM_FORMAT_NV16: cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P); break; case DRM_FORMAT_NV12MT: cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE); break; default: dev_err(ippdrv->dev, "inavlid target yuv order 0x%x.\n", fmt); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); return 0; } static int gsc_src_set_transf(struct device *dev, enum drm_exynos_degree degree, enum drm_exynos_flip flip) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:degree[%d]flip[0x%x]\n", __func__, degree, flip); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_ROT_MASK; switch (degree) { case EXYNOS_DRM_DEGREE_0: if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_XFLIP; if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_YFLIP; break; case EXYNOS_DRM_DEGREE_90: if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_90_XFLIP; else if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_90_YFLIP; else cfg |= GSC_IN_ROT_90; break; case EXYNOS_DRM_DEGREE_180: cfg |= GSC_IN_ROT_180; break; case EXYNOS_DRM_DEGREE_270: cfg |= GSC_IN_ROT_270; break; default: dev_err(ippdrv->dev, "inavlid degree value %d.\n", degree); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); return cfg ? 1 : 0; } static int gsc_src_set_size(struct device *dev, int swap, struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_property *property = ippdrv->property; struct drm_exynos_ipp_config *config = &property->config[EXYNOS_DRM_OPS_SRC]; struct drm_exynos_pos img_pos = *pos; struct drm_exynos_sz img_sz = *sz; u32 cfg; /* ToDo: check width and height */ if (swap) { img_pos.w = pos->h; img_pos.h = pos->w; img_sz.hsize = sz->vsize; img_sz.vsize = sz->hsize; } DRM_DEBUG_KMS("%s:x[%d]y[%d]w[%d]h[%d]\n", __func__, pos->x, pos->y, pos->w, pos->h); /* pixel offset */ cfg = (GSC_SRCIMG_OFFSET_X(img_pos.x) | GSC_SRCIMG_OFFSET_Y(img_pos.y)); gsc_write(cfg, GSC_SRCIMG_OFFSET); /* cropped size */ cfg = (GSC_CROPPED_WIDTH(img_pos.w) | GSC_CROPPED_HEIGHT(img_pos.h)); gsc_write(cfg, GSC_CROPPED_SIZE); DRM_DEBUG_KMS("%s:swap[%d]hsize[%d]vsize[%d]\n", __func__, swap, sz->hsize, sz->vsize); /* original size */ cfg = gsc_read(GSC_SRCIMG_SIZE); cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | GSC_SRCIMG_WIDTH_MASK); cfg |= (GSC_SRCIMG_WIDTH(sz->hsize) | GSC_SRCIMG_HEIGHT(sz->vsize)); gsc_write(cfg, GSC_SRCIMG_SIZE); config->sz = img_sz; config->pos = img_pos; return 0; } static int gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, enum drm_exynos_ipp_buf_ctrl buf_ctrl) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked; u32 cfg; u32 mask = 0x00000001 << buf_id; DRM_DEBUG_KMS("%s:buf_id[%d]buf_ctrl[%d]\n", __func__, buf_id, buf_ctrl); /* mask register set */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); switch (buf_ctrl) { case IPP_BUF_CTRL_QUEUE: masked = false; break; case IPP_BUF_CTRL_DEQUEUE: masked = true; break; default: dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n"); return -EINVAL; } /* sequence id */ cfg &= (~mask); cfg |= masked << buf_id; gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); return 0; } static int gsc_src_set_addr(struct device *dev, struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, enum drm_exynos_ipp_buf_ctrl buf_ctrl) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_property *property = ippdrv->property; struct drm_exynos_ipp_config *config = &property->config[EXYNOS_DRM_OPS_SRC]; int ret; DRM_DEBUG_KMS("%s:buf_id[%d]buf_ctrl[%d]\n", __func__, buf_id, buf_ctrl); if (buf_id > GSC_MAX_SRC) { dev_info(ippdrv->dev, "inavlid buf_id %d.\n", buf_id); return -ENOMEM; } /* address register set */ switch (buf_ctrl) { case IPP_BUF_CTRL_QUEUE: case IPP_BUF_CTRL_DEQUEUE: ret = gsc_set_planar_addr(buf_info, config->fmt, &config->sz); if (ret) { dev_err(dev, "failed to set plane addr.\n"); return ret; } gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], GSC_IN_BASE_ADDR_Y(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB], GSC_IN_BASE_ADDR_CB(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR], GSC_IN_BASE_ADDR_CR(buf_id)); break; default: /* bypass */ break; } return gsc_src_set_buf_seq(ctx, buf_id, buf_ctrl); } static struct exynos_drm_ipp_ops gsc_src_ops = { .set_fmt = gsc_src_set_fmt, .set_transf = gsc_src_set_transf, .set_size = gsc_src_set_size, .set_addr = gsc_src_set_addr, }; static int gsc_dst_set_fmt(struct device *dev, u32 fmt) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:fmt[0x%x]\n", __func__, fmt); cfg = gsc_read(GSC_OUT_CON); cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK | GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK | GSC_OUT_TILE_TYPE_MASK | GSC_OUT_TILE_MODE); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_OUT_RGB565; break; case DRM_FORMAT_XRGB8888: cfg |= GSC_OUT_XRGB8888; break; case DRM_FORMAT_YUYV: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_YUV422: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: cfg |= GSC_OUT_YUV420_3P; break; case DRM_FORMAT_NV12: case DRM_FORMAT_NV12M: case DRM_FORMAT_NV16: cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_NV12MT: cfg |= (GSC_OUT_TILE_C_16x8 | GSC_OUT_TILE_MODE); break; default: dev_err(ippdrv->dev, "inavlid target yuv order 0x%x.\n", fmt); return -EINVAL; } gsc_write(cfg, GSC_OUT_CON); return 0; } static int gsc_dst_set_transf(struct device *dev, enum drm_exynos_degree degree, enum drm_exynos_flip flip) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:degree[%d]flip[0x%x]\n", __func__, degree, flip); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_ROT_MASK; switch (degree) { case EXYNOS_DRM_DEGREE_0: if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_XFLIP; if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_YFLIP; break; case EXYNOS_DRM_DEGREE_90: if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_90_XFLIP; else if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_90_YFLIP; else cfg |= GSC_IN_ROT_90; break; case EXYNOS_DRM_DEGREE_180: cfg |= GSC_IN_ROT_180; break; case EXYNOS_DRM_DEGREE_270: cfg |= GSC_IN_ROT_270; break; default: dev_err(ippdrv->dev, "inavlid degree value %d.\n", degree); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); return cfg ? 1 : 0; } static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio, u32 *shift) { DRM_DEBUG_KMS("%s:src[%d]dst[%d]\n", __func__, src, dst); if (src >= dst * 64) { DRM_ERROR("failed to make ratio and shift.\n"); return -EINVAL; } else if (src >= dst * 32) { *ratio = 32; *shift = 5; } else if (src >= dst * 16) { *ratio = 16; *shift = 4; } else if (src >= dst * 8) { *ratio = 8; *shift = 3; } else if (src >= dst * 4) { *ratio = 4; *shift = 2; } else if (src >= dst * 2) { *ratio = 2; *shift = 1; } else { *ratio = 1; *shift = 0; } return 0; } static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, struct drm_exynos_pos *src, struct drm_exynos_pos *dst) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; u32 hfactor, vfactor; int ret = 0; ret = gsc_get_ratio_shift(src->w, dst->w, &sc->pre_hratio, &hfactor); if (ret) { dev_err(ippdrv->dev, "failed to get ratio horizontal.\n"); return ret; } ret = gsc_get_ratio_shift(src->h, dst->h, &sc->pre_vratio, &vfactor); if (ret) { dev_err(ippdrv->dev, "failed to get ratio vertical.\n"); return ret; } DRM_DEBUG_KMS("%s:pre_hratio[%d]hfactor[%d]pre_vratio[%d]vfactor[%d]\n", __func__, sc->pre_hratio, hfactor, sc->pre_vratio, vfactor); sc->main_hratio = (src->w << 16) / (dst->w << hfactor); sc->main_vratio = (src->h << 16) / (dst->h << vfactor); DRM_DEBUG_KMS("%s:main_hratio[%ld]main_vratio[%ld]\n", __func__, sc->main_hratio, sc->main_vratio); sc->pre_shfactor = 10 - (hfactor + vfactor); DRM_DEBUG_KMS("%s:pre_shfactor[%d]\n", __func__, sc->pre_shfactor); cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) | GSC_PRESC_H_RATIO(sc->pre_hratio) | GSC_PRESC_V_RATIO(sc->pre_vratio)); gsc_write(cfg, GSC_PRE_SCALE_RATIO); return ret; } static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) { u32 cfg; DRM_DEBUG_KMS("%s:main_hratio[%ld]main_vratio[%ld]\n", __func__, sc->main_hratio, sc->main_vratio); cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio); gsc_write(cfg, GSC_MAIN_H_RATIO); cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio); gsc_write(cfg, GSC_MAIN_V_RATIO); } static int gsc_dst_set_size(struct device *dev, int swap, struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) { struct gsc_context *ctx = get_gsc_context(dev); struct drm_exynos_pos img_pos = *pos; struct drm_exynos_sz img_sz = *sz; struct gsc_scaler *sc = &ctx->sc; u32 cfg; DRM_DEBUG_KMS("%s:swap[%d]x[%d]y[%d]w[%d]h[%d]\n", __func__, swap, pos->x, pos->y, pos->w, pos->h); if (swap) { img_pos.w = pos->h; img_pos.h = pos->w; img_sz.hsize = sz->vsize; img_sz.vsize = sz->hsize; } /* pixel offset */ cfg = (GSC_DSTIMG_OFFSET_X(img_pos.x) | GSC_DSTIMG_OFFSET_Y(img_pos.y)); gsc_write(cfg, GSC_DSTIMG_OFFSET); /* scaled size */ cfg = (GSC_SCALED_WIDTH(pos->w) | GSC_SCALED_HEIGHT(pos->h)); gsc_write(cfg, GSC_SCALED_SIZE); DRM_DEBUG_KMS("%s:hsize[%d]vsize[%d]\n", __func__, sz->hsize, sz->vsize); /* original size */ cfg = gsc_read(GSC_DSTIMG_SIZE); cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK); cfg |= (GSC_DSTIMG_WIDTH(img_sz.hsize) | GSC_DSTIMG_HEIGHT(img_sz.vsize)); gsc_write(cfg, GSC_DSTIMG_SIZE); cfg = gsc_read(GSC_OUT_CON); cfg &= ~GSC_OUT_RGB_TYPE_MASK; if (pos->w >= GSC_WIDTH_ITU_709) if (sc->range) cfg |= GSC_OUT_RGB_HD_WIDE; else cfg |= GSC_OUT_RGB_HD_NARROW; else if (sc->range) cfg |= GSC_OUT_RGB_SD_WIDE; else cfg |= GSC_OUT_RGB_SD_NARROW; gsc_write(cfg, GSC_OUT_CON); return 0; } static int gsc_dst_get_buf_seq(struct gsc_context *ctx) { u32 cfg, i, buf_num = GSC_REG_SZ; u32 mask = 0x00000001; cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); for (i = 0; i < GSC_REG_SZ; i++) if (cfg & (mask << i)) buf_num--; DRM_DEBUG_KMS("%s:buf_num[%d]\n", __func__, buf_num); return buf_num; } static int gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, enum drm_exynos_ipp_buf_ctrl buf_ctrl) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked; u32 cfg; u32 mask = 0x00000001 << buf_id; DRM_DEBUG_KMS("%s:buf_id[%d]buf_ctrl[%d]\n", __func__, buf_id, buf_ctrl); /* mask register set */ cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); switch (buf_ctrl) { case IPP_BUF_CTRL_QUEUE: masked = false; break; case IPP_BUF_CTRL_DEQUEUE: masked = true; break; default: dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n"); return -EINVAL; } /* sequence id */ cfg &= (~mask); cfg |= masked << buf_id; gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); /* interrupt enable */ if (buf_ctrl == IPP_BUF_CTRL_QUEUE && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START) gsc_handle_irq(ctx, true, false, true); return 0; } static int gsc_dst_set_addr(struct device *dev, struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, enum drm_exynos_ipp_buf_ctrl buf_ctrl) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_property *property = ippdrv->property; struct drm_exynos_ipp_config *config = &property->config[EXYNOS_DRM_OPS_DST]; int ret; DRM_DEBUG_KMS("%s:buf_id[%d]buf_ctrl[%d]\n", __func__, buf_id, buf_ctrl); if (buf_id > GSC_MAX_DST) { dev_info(ippdrv->dev, "inavlid buf_id %d.\n", buf_id); return -ENOMEM; } /* address register set */ switch (buf_ctrl) { case IPP_BUF_CTRL_QUEUE: case IPP_BUF_CTRL_DEQUEUE: ret = gsc_set_planar_addr(buf_info, config->fmt, &config->sz); if (ret) { dev_err(dev, "failed to set plane addr.\n"); return ret; } gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], GSC_OUT_BASE_ADDR_Y(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB], GSC_OUT_BASE_ADDR_CB(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR], GSC_OUT_BASE_ADDR_CR(buf_id)); break; default: /* bypass */ break; } return gsc_dst_set_buf_seq(ctx, buf_id, buf_ctrl); } static struct exynos_drm_ipp_ops gsc_dst_ops = { .set_fmt = gsc_dst_set_fmt, .set_transf = gsc_dst_set_transf, .set_size = gsc_dst_set_size, .set_addr = gsc_dst_set_addr, }; static int gsc_power_on(struct gsc_context *ctx, bool enable) { DRM_DEBUG_KMS("%s:\n", __func__); if (enable) { clk_enable(ctx->gsc_clk); /* ToDo : wb_b_clk */ ctx->suspended = false; } else { clk_disable(ctx->gsc_clk); /* ToDo : wb_b_clk */ ctx->suspended = true; } return 0; } static irqreturn_t gsc_irq_handler(int irq, void *dev_id) { struct gsc_context *ctx = dev_id; struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg, status; int buf_id = 0; DRM_DEBUG_KMS("%s:gsc id[%d]\n", __func__, ctx->id); status = gsc_read(GSC_IRQ); if (status & GSC_IRQ_STATUS_OR_IRQ) { dev_err(ippdrv->dev, "occured overflow at %d, status 0x%x.\n", ctx->id, status); return IRQ_NONE; } if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { dev_err(ippdrv->dev, "occured frame done at %d, status 0x%x.\n", ctx->id, status); /* ToDo: Frame control */ } if (list_empty(&ippdrv->event_list)) { DRM_DEBUG_KMS("%s:event list empty.\n", __func__); return IRQ_HANDLED; } cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); buf_id = GSC_IN_CURR_GET_INDEX(cfg); if (buf_id < 0) return IRQ_HANDLED; DRM_DEBUG_KMS("%s:buf_id[%d]\n", __func__, buf_id); if (gsc_dst_set_buf_seq(ctx, buf_id, IPP_BUF_CTRL_DEQUEUE) < 0) { DRM_ERROR("failed to dequeue.\n"); return IRQ_HANDLED; } ipp_send_event_handler(ippdrv, buf_id); if (gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP) gsc_handle_irq(ctx, false, false, true); return IRQ_HANDLED; } static int gsc_ippdrv_check_property(struct device *dev, struct drm_exynos_ipp_property *property) { /* ToDo: check valid using property information */ DRM_DEBUG_KMS("%s\n", __func__); return 0; } static int gsc_ippdrv_reset(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); int ret; DRM_DEBUG_KMS("%s\n", __func__); /* reset h/w block */ ret = gsc_sw_reset(ctx); if (ret < 0) { dev_err(dev, "failed to reset hardware.\n"); return ret; } memset(&ctx->sc, 0x0, sizeof(ctx->sc)); return 0; } static int gsc_check_prepare(struct gsc_context *ctx) { /* ToDo: check prepare using read register */ DRM_DEBUG_KMS("%s\n", __func__); return 0; } static int gsc_ippdrv_start(struct device *dev, enum drm_exynos_ipp_cmd cmd) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_property *property = ippdrv->property; struct drm_exynos_ipp_config *config = &property->config[EXYNOS_DRM_OPS_DST]; u32 cfg; int ret; int enable = 1; DRM_DEBUG_KMS("%s:cmd[%d]\n", __func__, cmd); ret = gsc_check_prepare(ctx); if (ret) { dev_err(dev, "failed to check prepare.\n"); return ret; } ippdrv->cmd = cmd; gsc_handle_irq(ctx, true, false, true); switch (cmd) { case IPP_CMD_M2M: /* bypass */ break; case IPP_CMD_WB: gsc_set_gscblk_fimd_wb(ctx, enable); exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)enable); break; case IPP_CMD_OUTPUT: default: ret = -EINVAL; dev_err(dev, "invalid operations.\n"); return ret; } ret = gsc_set_prescaler(ctx, &ctx->sc, &config->pos, &config->pos); if (ret) { dev_err(dev, "failed to set precalser.\n"); return ret; } gsc_set_scaler(ctx, &ctx->sc); cfg = gsc_read(GSC_ENABLE); cfg |= GSC_ENABLE_ON; gsc_write(cfg, GSC_ENABLE); return 0; } static void gsc_ippdrv_stop(struct device *dev, enum drm_exynos_ipp_cmd cmd) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; int enable = 0; DRM_DEBUG_KMS("%s:cmd[%d]\n", __func__, cmd); switch (cmd) { case IPP_CMD_M2M: /* bypass */ break; case IPP_CMD_WB: gsc_set_gscblk_fimd_wb(ctx, enable); exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)enable); break; case IPP_CMD_OUTPUT: default: dev_err(dev, "invalid operations.\n"); break; } ippdrv->cmd = IPP_CMD_NONE; gsc_handle_irq(ctx, false, false, true); /* reset sequence */ gsc_write(0xff, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(0xff, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(0xff, GSC_OUT_BASE_ADDR_CR_MASK); cfg = gsc_read(GSC_ENABLE); cfg &= ~GSC_ENABLE_ON; gsc_write(cfg, GSC_ENABLE); } #ifdef CONFIG_SLP_DISP_DEBUG static int gsc_read_reg(struct gsc_context *ctx, char *buf) { u32 cfg; int i; int pos = 0; pos += sprintf(buf+pos, "0x%.8x | ", GSC_BASE_REG(ctx->id)); for (i = 1; i < GSC_MAX_REG + 1; i++) { cfg = gsc_read((i-1) * sizeof(u32)); pos += sprintf(buf+pos, "0x%.8x ", cfg); if (i % 4 == 0) pos += sprintf(buf+pos, "\n0x%.8x | ", GSC_BASE_REG(ctx->id) + (i * sizeof(u32))); } pos += sprintf(buf+pos, "\n"); return pos; } static ssize_t show_read_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct gsc_context *ctx = get_gsc_context(dev); if (!ctx->regs) { dev_err(dev, "failed to get current register.\n"); return -EINVAL; } return gsc_read_reg(ctx, buf); } static struct device_attribute device_attrs[] = { __ATTR(read_reg, S_IRUGO, show_read_reg, NULL), }; #endif static int __devinit gsc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gsc_context *ctx; struct resource *res; struct exynos_drm_ippdrv *ippdrv; struct exynos_drm_gsc_pdata *pdata; int ret = -EINVAL; #ifdef CONFIG_SLP_DISP_DEBUG int i; #endif pdata = pdev->dev.platform_data; if (!pdata) { dev_err(dev, "no platform data specified.\n"); return -EINVAL; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; /* clock control */ ctx->gsc_clk = clk_get(dev, "gscl"); if (IS_ERR(ctx->gsc_clk)) { dev_err(dev, "failed to get gsc clock.\n"); ret = PTR_ERR(ctx->gsc_clk); goto err_ctx; } /* resource memory */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "failed to find registers.\n"); ret = -ENOENT; goto err_clk; } ctx->regs_res = request_mem_region(res->start, resource_size(res), dev_name(dev)); if (!ctx->regs_res) { dev_err(dev, "failed to claim register region.\n"); ret = -ENOENT; goto err_clk; } ctx->regs = ioremap(res->start, resource_size(res)); if (!ctx->regs) { dev_err(dev, "failed to map registers.\n"); ret = -ENXIO; goto err_req_region; } /* resource irq */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "failed to request irq resource.\n"); goto err_get_regs; } ctx->irq = res->start; ret = request_threaded_irq(ctx->irq, NULL, gsc_irq_handler, IRQF_ONESHOT, "drm_gsc", ctx); if (ret < 0) { dev_err(dev, "failed to request irq.\n"); goto err_get_regs; } /* context initailization */ ctx->id = pdev->id; ctx->capa = gsc51_capa; if (!ctx->capa) { dev_err(dev, "failed to get capability.\n"); goto err_get_irq; } #ifdef CONFIG_SLP_DISP_DEBUG for (i = 0; i < ARRAY_SIZE(device_attrs); i++) { ret = device_create_file(&(pdev->dev), &device_attrs[i]); if (ret) break; } if (ret < 0) dev_err(&pdev->dev, "failed to add sysfs entries\n"); #endif DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); ippdrv = &ctx->ippdrv; ippdrv->dev = dev; ippdrv->ops[EXYNOS_DRM_OPS_SRC] = &gsc_src_ops; ippdrv->ops[EXYNOS_DRM_OPS_DST] = &gsc_dst_ops; ippdrv->check_property = gsc_ippdrv_check_property; ippdrv->reset = gsc_ippdrv_reset; ippdrv->start = gsc_ippdrv_start; ippdrv->stop = gsc_ippdrv_stop; mutex_init(&ctx->lock); platform_set_drvdata(pdev, ctx); pm_runtime_set_active(dev); pm_runtime_enable(dev); ret = exynos_drm_ippdrv_register(ippdrv); if (ret < 0) { dev_err(dev, "failed to register drm gsc device.\n"); goto err_get_irq; } dev_info(&pdev->dev, "drm gsc registered successfully.\n"); return 0; err_get_irq: free_irq(ctx->irq, ctx); err_get_regs: iounmap(ctx->regs); err_req_region: release_resource(ctx->regs_res); kfree(ctx->regs_res); err_clk: clk_put(ctx->gsc_clk); err_ctx: kfree(ctx); return ret; } static int __devexit gsc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; exynos_drm_ippdrv_unregister(ippdrv); pm_runtime_set_suspended(dev); pm_runtime_disable(dev); free_irq(ctx->irq, ctx); iounmap(ctx->regs); release_resource(ctx->regs_res); kfree(ctx->regs_res); clk_put(ctx->gsc_clk); kfree(ctx); return 0; } #ifdef CONFIG_PM_SLEEP static int gsc_suspend(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); if (pm_runtime_suspended(dev)) return 0; /* ToDo */ return gsc_power_on(ctx, false); } static int gsc_resume(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); if (!pm_runtime_suspended(dev)) return gsc_power_on(ctx, true); /* ToDo */ return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int gsc_runtime_suspend(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); /* ToDo */ return gsc_power_on(ctx, false); } static int gsc_runtime_resume(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __FILE__, ctx->id); /* ToDo */ return gsc_power_on(ctx, true); } #endif static const struct dev_pm_ops gsc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(gsc_suspend, gsc_resume) SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) }; /* ToDo: need to check use case platform_device_id */ struct platform_driver gsc_driver = { .probe = gsc_probe, .remove = __devexit_p(gsc_remove), .driver = { .name = "exynos-drm-gsc", .owner = THIS_MODULE, .pm = &gsc_pm_ops, }, };