/* * lis3lv02d.c - ST LIS3LV02DL accelerometer driver * * Copyright (C) 2007-2008 Yan Burman * Copyright (C) 2008 Eric Piel * Copyright (C) 2008-2009 Pavel Machek * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/dmi.h> #include <linux/module.h> #include <linux/types.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/input-polldev.h> #include <linux/delay.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/freezer.h> #include <linux/uaccess.h> #include <linux/miscdevice.h> #include <asm/atomic.h> #include "lis3lv02d.h" #define DRIVER_NAME "lis3lv02d" /* joystick device poll interval in milliseconds */ #define MDPS_POLL_INTERVAL 50 /* * The sensor can also generate interrupts (DRDY) but it's pretty pointless * because they are generated even if the data do not change. So it's better * to keep the interrupt for the free-fall event. The values are updated at * 40Hz (at the lowest frequency), but as it can be pretty time consuming on * some low processor, we poll the sensor only at 20Hz... enough for the * joystick. */ #define LIS3_PWRON_DELAY_WAI_12B (5000) #define LIS3_PWRON_DELAY_WAI_8B (3000) /* * LIS3LV02D spec says 1024 LSBs corresponds 1 G -> 1LSB is 1000/1024 mG * LIS302D spec says: 18 mG / digit * LIS3_ACCURACY is used to increase accuracy of the intermediate * calculation results. */ #define LIS3_ACCURACY 1024 /* Sensitivity values for -2G +2G scale */ #define LIS3_SENSITIVITY_12B ((LIS3_ACCURACY * 1000) / 1024) #define LIS3_SENSITIVITY_8B (18 * LIS3_ACCURACY) #define LIS3_DEFAULT_FUZZ 3 #define LIS3_DEFAULT_FLAT 3 struct lis3lv02d lis3_dev = { .misc_wait = __WAIT_QUEUE_HEAD_INITIALIZER(lis3_dev.misc_wait), }; EXPORT_SYMBOL_GPL(lis3_dev); static s16 lis3lv02d_read_8(struct lis3lv02d *lis3, int reg) { s8 lo; if (lis3->read(lis3, reg, &lo) < 0) return 0; return lo; } static s16 lis3lv02d_read_12(struct lis3lv02d *lis3, int reg) { u8 lo, hi; lis3->read(lis3, reg - 1, &lo); lis3->read(lis3, reg, &hi); /* In "12 bit right justified" mode, bit 6, bit 7, bit 8 = bit 5 */ return (s16)((hi << 8) | lo); } /** * lis3lv02d_get_axis - For the given axis, give the value converted * @axis: 1,2,3 - can also be negative * @hw_values: raw values returned by the hardware * * Returns the converted value. */ static inline int lis3lv02d_get_axis(s8 axis, int hw_values[3]) { if (axis > 0) return hw_values[axis - 1]; else return -hw_values[-axis - 1]; } /** * lis3lv02d_get_xyz - Get X, Y and Z axis values from the accelerometer * @lis3: pointer to the device struct * @x: where to store the X axis value * @y: where to store the Y axis value * @z: where to store the Z axis value * * Note that 40Hz input device can eat up about 10% CPU at 800MHZ */ static void lis3lv02d_get_xyz(struct lis3lv02d *lis3, int *x, int *y, int *z) { int position[3]; int i; mutex_lock(&lis3->mutex); position[0] = lis3->read_data(lis3, OUTX); position[1] = lis3->read_data(lis3, OUTY); position[2] = lis3->read_data(lis3, OUTZ); mutex_unlock(&lis3->mutex); for (i = 0; i < 3; i++) position[i] = (position[i] * lis3->scale) / LIS3_ACCURACY; *x = lis3lv02d_get_axis(lis3->ac.x, position); *y = lis3lv02d_get_axis(lis3->ac.y, position); *z = lis3lv02d_get_axis(lis3->ac.z, position); } /* conversion btw sampling rate and the register values */ static int lis3_12_rates[4] = {40, 160, 640, 2560}; static int lis3_8_rates[2] = {100, 400}; /* ODR is Output Data Rate */ static int lis3lv02d_get_odr(void) { u8 ctrl; int shift; lis3_dev.read(&lis3_dev, CTRL_REG1, &ctrl); ctrl &= lis3_dev.odr_mask; shift = ffs(lis3_dev.odr_mask) - 1; return lis3_dev.odrs[(ctrl >> shift)]; } static int lis3lv02d_set_odr(int rate) { u8 ctrl; int i, len, shift; lis3_dev.read(&lis3_dev, CTRL_REG1, &ctrl); ctrl &= ~lis3_dev.odr_mask; len = 1 << hweight_long(lis3_dev.odr_mask); /* # of possible values */ shift = ffs(lis3_dev.odr_mask) - 1; for (i = 0; i < len; i++) if (lis3_dev.odrs[i] == rate) { lis3_dev.write(&lis3_dev, CTRL_REG1, ctrl | (i << shift)); return 0; } return -EINVAL; } static int lis3lv02d_selftest(struct lis3lv02d *lis3, s16 results[3]) { u8 reg; s16 x, y, z; u8 selftest; int ret; mutex_lock(&lis3->mutex); if (lis3_dev.whoami == WAI_12B) selftest = CTRL1_ST; else selftest = CTRL1_STP; lis3->read(lis3, CTRL_REG1, ®); lis3->write(lis3, CTRL_REG1, (reg | selftest)); msleep(lis3->pwron_delay / lis3lv02d_get_odr()); /* Read directly to avoid axis remap */ x = lis3->read_data(lis3, OUTX); y = lis3->read_data(lis3, OUTY); z = lis3->read_data(lis3, OUTZ); /* back to normal settings */ lis3->write(lis3, CTRL_REG1, reg); msleep(lis3->pwron_delay / lis3lv02d_get_odr()); results[0] = x - lis3->read_data(lis3, OUTX); results[1] = y - lis3->read_data(lis3, OUTY); results[2] = z - lis3->read_data(lis3, OUTZ); ret = 0; if (lis3->pdata) { int i; for (i = 0; i < 3; i++) { /* Check against selftest acceptance limits */ if ((results[i] < lis3->pdata->st_min_limits[i]) || (results[i] > lis3->pdata->st_max_limits[i])) { ret = -EIO; goto fail; } } } /* test passed */ fail: mutex_unlock(&lis3->mutex); return ret; } void lis3lv02d_poweroff(struct lis3lv02d *lis3) { /* disable X,Y,Z axis and power down */ lis3->write(lis3, CTRL_REG1, 0x00); } EXPORT_SYMBOL_GPL(lis3lv02d_poweroff); void lis3lv02d_poweron(struct lis3lv02d *lis3) { u8 reg; lis3->init(lis3); /* LIS3 power on delay is quite long */ msleep(lis3->pwron_delay / lis3lv02d_get_odr()); /* * Common configuration * BDU: (12 bits sensors only) LSB and MSB values are not updated until * both have been read. So the value read will always be correct. */ if (lis3->whoami == WAI_12B) { lis3->read(lis3, CTRL_REG2, ®); reg |= CTRL2_BDU; lis3->write(lis3, CTRL_REG2, reg); } } EXPORT_SYMBOL_GPL(lis3lv02d_poweron); static irqreturn_t lis302dl_interrupt(int irq, void *dummy) { /* * Be careful: on some HP laptops the bios force DD when on battery and * the lid is closed. This leads to interrupts as soon as a little move * is done. */ atomic_inc(&lis3_dev.count); wake_up_interruptible(&lis3_dev.misc_wait); kill_fasync(&lis3_dev.async_queue, SIGIO, POLL_IN); return IRQ_HANDLED; } static int lis3lv02d_misc_open(struct inode *inode, struct file *file) { int ret; if (test_and_set_bit(0, &lis3_dev.misc_opened)) return -EBUSY; /* already open */ atomic_set(&lis3_dev.count, 0); /* * The sensor can generate interrupts for free-fall and direction * detection (distinguishable with FF_WU_SRC and DD_SRC) but to keep * the things simple and _fast_ we activate it only for free-fall, so * no need to read register (very slow with ACPI). For the same reason, * we forbid shared interrupts. * * IRQF_TRIGGER_RISING seems pointless on HP laptops because the * io-apic is not configurable (and generates a warning) but I keep it * in case of support for other hardware. */ ret = request_irq(lis3_dev.irq, lis302dl_interrupt, IRQF_TRIGGER_RISING, DRIVER_NAME, &lis3_dev); if (ret) { clear_bit(0, &lis3_dev.misc_opened); printk(KERN_ERR DRIVER_NAME ": IRQ%d allocation failed\n", lis3_dev.irq); return -EBUSY; } return 0; } static int lis3lv02d_misc_release(struct inode *inode, struct file *file) { fasync_helper(-1, file, 0, &lis3_dev.async_queue); free_irq(lis3_dev.irq, &lis3_dev); clear_bit(0, &lis3_dev.misc_opened); /* release the device */ return 0; } static ssize_t lis3lv02d_misc_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { DECLARE_WAITQUEUE(wait, current); u32 data; unsigned char byte_data; ssize_t retval = 1; if (count < 1) return -EINVAL; add_wait_queue(&lis3_dev.misc_wait, &wait); while (true) { set_current_state(TASK_INTERRUPTIBLE); data = atomic_xchg(&lis3_dev.count, 0); if (data) break; if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto out; } if (signal_pending(current)) { retval = -ERESTARTSYS; goto out; } schedule(); } if (data < 255) byte_data = data; else byte_data = 255; /* make sure we are not going into copy_to_user() with * TASK_INTERRUPTIBLE state */ set_current_state(TASK_RUNNING); if (copy_to_user(buf, &byte_data, sizeof(byte_data))) retval = -EFAULT; out: __set_current_state(TASK_RUNNING); remove_wait_queue(&lis3_dev.misc_wait, &wait); return retval; } static unsigned int lis3lv02d_misc_poll(struct file *file, poll_table *wait) { poll_wait(file, &lis3_dev.misc_wait, wait); if (atomic_read(&lis3_dev.count)) return POLLIN | POLLRDNORM; return 0; } static int lis3lv02d_misc_fasync(int fd, struct file *file, int on) { return fasync_helper(fd, file, on, &lis3_dev.async_queue); } static const struct file_operations lis3lv02d_misc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = lis3lv02d_misc_read, .open = lis3lv02d_misc_open, .release = lis3lv02d_misc_release, .poll = lis3lv02d_misc_poll, .fasync = lis3lv02d_misc_fasync, }; static struct miscdevice lis3lv02d_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = "freefall", .fops = &lis3lv02d_misc_fops, }; static void lis3lv02d_joystick_poll(struct input_polled_dev *pidev) { int x, y, z; lis3lv02d_get_xyz(&lis3_dev, &x, &y, &z); input_report_abs(pidev->input, ABS_X, x); input_report_abs(pidev->input, ABS_Y, y); input_report_abs(pidev->input, ABS_Z, z); input_sync(pidev->input); } int lis3lv02d_joystick_enable(void) { struct input_dev *input_dev; int err; int max_val, fuzz, flat; if (lis3_dev.idev) return -EINVAL; lis3_dev.idev = input_allocate_polled_device(); if (!lis3_dev.idev) return -ENOMEM; lis3_dev.idev->poll = lis3lv02d_joystick_poll; lis3_dev.idev->poll_interval = MDPS_POLL_INTERVAL; input_dev = lis3_dev.idev->input; input_dev->name = "ST LIS3LV02DL Accelerometer"; input_dev->phys = DRIVER_NAME "/input0"; input_dev->id.bustype = BUS_HOST; input_dev->id.vendor = 0; input_dev->dev.parent = &lis3_dev.pdev->dev; set_bit(EV_ABS, input_dev->evbit); max_val = (lis3_dev.mdps_max_val * lis3_dev.scale) / LIS3_ACCURACY; fuzz = (LIS3_DEFAULT_FUZZ * lis3_dev.scale) / LIS3_ACCURACY; flat = (LIS3_DEFAULT_FLAT * lis3_dev.scale) / LIS3_ACCURACY; input_set_abs_params(input_dev, ABS_X, -max_val, max_val, fuzz, flat); input_set_abs_params(input_dev, ABS_Y, -max_val, max_val, fuzz, flat); input_set_abs_params(input_dev, ABS_Z, -max_val, max_val, fuzz, flat); err = input_register_polled_device(lis3_dev.idev); if (err) { input_free_polled_device(lis3_dev.idev); lis3_dev.idev = NULL; } return err; } EXPORT_SYMBOL_GPL(lis3lv02d_joystick_enable); void lis3lv02d_joystick_disable(void) { if (!lis3_dev.idev) return; if (lis3_dev.irq) misc_deregister(&lis3lv02d_misc_device); input_unregister_polled_device(lis3_dev.idev); input_free_polled_device(lis3_dev.idev); lis3_dev.idev = NULL; } EXPORT_SYMBOL_GPL(lis3lv02d_joystick_disable); /* Sysfs stuff */ static ssize_t lis3lv02d_selftest_show(struct device *dev, struct device_attribute *attr, char *buf) { int result; s16 values[3]; result = lis3lv02d_selftest(&lis3_dev, values); return sprintf(buf, "%s %d %d %d\n", result == 0 ? "OK" : "FAIL", values[0], values[1], values[2]); } static ssize_t lis3lv02d_position_show(struct device *dev, struct device_attribute *attr, char *buf) { int x, y, z; lis3lv02d_get_xyz(&lis3_dev, &x, &y, &z); return sprintf(buf, "(%d,%d,%d)\n", x, y, z); } static ssize_t lis3lv02d_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", lis3lv02d_get_odr()); } static ssize_t lis3lv02d_rate_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long rate; if (strict_strtoul(buf, 0, &rate)) return -EINVAL; if (lis3lv02d_set_odr(rate)) return -EINVAL; return count; } static DEVICE_ATTR(selftest, S_IRUSR, lis3lv02d_selftest_show, NULL); static DEVICE_ATTR(position, S_IRUGO, lis3lv02d_position_show, NULL); static DEVICE_ATTR(rate, S_IRUGO | S_IWUSR, lis3lv02d_rate_show, lis3lv02d_rate_set); static struct attribute *lis3lv02d_attributes[] = { &dev_attr_selftest.attr, &dev_attr_position.attr, &dev_attr_rate.attr, NULL }; static struct attribute_group lis3lv02d_attribute_group = { .attrs = lis3lv02d_attributes }; static int lis3lv02d_add_fs(struct lis3lv02d *lis3) { lis3->pdev = platform_device_register_simple(DRIVER_NAME, -1, NULL, 0); if (IS_ERR(lis3->pdev)) return PTR_ERR(lis3->pdev); return sysfs_create_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group); } int lis3lv02d_remove_fs(struct lis3lv02d *lis3) { sysfs_remove_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group); platform_device_unregister(lis3->pdev); return 0; } EXPORT_SYMBOL_GPL(lis3lv02d_remove_fs); /* * Initialise the accelerometer and the various subsystems. * Should be rather independent of the bus system. */ int lis3lv02d_init_device(struct lis3lv02d *dev) { dev->whoami = lis3lv02d_read_8(dev, WHO_AM_I); switch (dev->whoami) { case WAI_12B: printk(KERN_INFO DRIVER_NAME ": 12 bits sensor found\n"); dev->read_data = lis3lv02d_read_12; dev->mdps_max_val = 2048; dev->pwron_delay = LIS3_PWRON_DELAY_WAI_12B; dev->odrs = lis3_12_rates; dev->odr_mask = CTRL1_DF0 | CTRL1_DF1; dev->scale = LIS3_SENSITIVITY_12B; break; case WAI_8B: printk(KERN_INFO DRIVER_NAME ": 8 bits sensor found\n"); dev->read_data = lis3lv02d_read_8; dev->mdps_max_val = 128; dev->pwron_delay = LIS3_PWRON_DELAY_WAI_8B; dev->odrs = lis3_8_rates; dev->odr_mask = CTRL1_DR; dev->scale = LIS3_SENSITIVITY_8B; break; default: printk(KERN_ERR DRIVER_NAME ": unknown sensor type 0x%X\n", dev->whoami); return -EINVAL; } mutex_init(&dev->mutex); lis3lv02d_add_fs(dev); lis3lv02d_poweron(dev); if (lis3lv02d_joystick_enable()) printk(KERN_ERR DRIVER_NAME ": joystick initialization failed\n"); /* passing in platform specific data is purely optional and only * used by the SPI transport layer at the moment */ if (dev->pdata) { struct lis3lv02d_platform_data *p = dev->pdata; if (p->click_flags && (dev->whoami == WAI_8B)) { dev->write(dev, CLICK_CFG, p->click_flags); dev->write(dev, CLICK_TIMELIMIT, p->click_time_limit); dev->write(dev, CLICK_LATENCY, p->click_latency); dev->write(dev, CLICK_WINDOW, p->click_window); dev->write(dev, CLICK_THSZ, p->click_thresh_z & 0xf); dev->write(dev, CLICK_THSY_X, (p->click_thresh_x & 0xf) | (p->click_thresh_y << 4)); } if (p->wakeup_flags && (dev->whoami == WAI_8B)) { dev->write(dev, FF_WU_CFG_1, p->wakeup_flags); dev->write(dev, FF_WU_THS_1, p->wakeup_thresh & 0x7f); /* default to 2.5ms for now */ dev->write(dev, FF_WU_DURATION_1, 1); /* enable high pass filter for both free-fall units */ dev->write(dev, CTRL_REG2, HP_FF_WU1 | HP_FF_WU2); } if (p->irq_cfg) dev->write(dev, CTRL_REG3, p->irq_cfg); } /* bail if we did not get an IRQ from the bus layer */ if (!dev->irq) { printk(KERN_ERR DRIVER_NAME ": No IRQ. Disabling /dev/freefall\n"); goto out; } if (misc_register(&lis3lv02d_misc_device)) printk(KERN_ERR DRIVER_NAME ": misc_register failed\n"); out: return 0; } EXPORT_SYMBOL_GPL(lis3lv02d_init_device); MODULE_DESCRIPTION("ST LIS3LV02Dx three-axis digital accelerometer driver"); MODULE_AUTHOR("Yan Burman, Eric Piel, Pavel Machek"); MODULE_LICENSE("GPL");