/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2003, 2004 Ralf Baechle <ralf@linux-mips.org> * Copyright (C) MIPS Technologies, Inc. * written by Ralf Baechle <ralf@linux-mips.org> */ #ifndef _ASM_HAZARDS_H #define _ASM_HAZARDS_H #include <linux/config.h> #ifdef __ASSEMBLY__ .macro _ssnop sll $0, $0, 1 .endm .macro _ehb sll $0, $0, 3 .endm /* * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent * use of the JTLB for instructions should not occur for 4 cpu cycles and use * for data translations should not occur for 3 cpu cycles. */ #ifdef CONFIG_CPU_RM9000 .macro mtc0_tlbw_hazard .set push .set mips32 _ssnop; _ssnop; _ssnop; _ssnop .set pop .endm .macro tlbw_eret_hazard .set push .set mips32 _ssnop; _ssnop; _ssnop; _ssnop .set pop .endm #else /* * The taken branch will result in a two cycle penalty for the two killed * instructions on R4000 / R4400. Other processors only have a single cycle * hazard so this is nice trick to have an optimal code for a range of * processors. */ .macro mtc0_tlbw_hazard b . + 8 .endm .macro tlbw_eret_hazard .endm #endif /* * mtc0->mfc0 hazard * The 24K has a 2 cycle mtc0/mfc0 execution hazard. * It is a MIPS32R2 processor so ehb will clear the hazard. */ #ifdef CONFIG_CPU_MIPSR2 /* * Use a macro for ehb unless explicit support for MIPSR2 is enabled */ #define irq_enable_hazard _ehb #define irq_disable_hazard _ehb #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) /* * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. */ #define irq_enable_hazard #define irq_disable_hazard #else /* * Classic MIPS needs 1 - 3 nops or ssnops */ #define irq_enable_hazard #define irq_disable_hazard \ _ssnop; _ssnop; _ssnop #endif #else /* __ASSEMBLY__ */ __asm__( " .macro _ssnop \n" " sll $0, $0, 1 \n" " .endm \n" " \n" " .macro _ehb \n" " sll $0, $0, 3 \n" " .endm \n"); #ifdef CONFIG_CPU_RM9000 /* * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent * use of the JTLB for instructions should not occur for 4 cpu cycles and use * for data translations should not occur for 3 cpu cycles. */ #define mtc0_tlbw_hazard() \ __asm__ __volatile__( \ " .set mips32 \n" \ " _ssnop \n" \ " _ssnop \n" \ " _ssnop \n" \ " _ssnop \n" \ " .set mips0 \n") #define tlbw_use_hazard() \ __asm__ __volatile__( \ " .set mips32 \n" \ " _ssnop \n" \ " _ssnop \n" \ " _ssnop \n" \ " _ssnop \n" \ " .set mips0 \n") #else /* * Overkill warning ... */ #define mtc0_tlbw_hazard() \ __asm__ __volatile__( \ " .set noreorder \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " .set reorder \n") #define tlbw_use_hazard() \ __asm__ __volatile__( \ " .set noreorder \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " nop \n" \ " .set reorder \n") #endif /* * Interrupt enable/disable hazards * Some processors have hazards when modifying * the status register to change the interrupt state */ #ifdef CONFIG_CPU_MIPSR2 __asm__(" .macro irq_enable_hazard \n" " _ehb \n" " .endm \n" " \n" " .macro irq_disable_hazard \n" " _ehb \n" " .endm \n"); #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) /* * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. */ __asm__( " .macro irq_enable_hazard \n" " .endm \n" " \n" " .macro irq_disable_hazard \n" " .endm \n"); #else /* * Default for classic MIPS processors. Assume worst case hazards but don't * care about the irq_enable_hazard - sooner or later the hardware will * enable it and we don't care when exactly. */ __asm__( " # \n" " # There is a hazard but we do not care \n" " # \n" " .macro\tirq_enable_hazard \n" " .endm \n" " \n" " .macro\tirq_disable_hazard \n" " _ssnop \n" " _ssnop \n" " _ssnop \n" " .endm \n"); #endif #define irq_enable_hazard() \ __asm__ __volatile__("irq_enable_hazard") #define irq_disable_hazard() \ __asm__ __volatile__("irq_disable_hazard") /* * Back-to-back hazards - * * What is needed to separate a move to cp0 from a subsequent read from the * same cp0 register? */ #ifdef CONFIG_CPU_MIPSR2 __asm__(" .macro back_to_back_c0_hazard \n" " _ehb \n" " .endm \n"); #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \ defined(CONFIG_CPU_SB1) __asm__(" .macro back_to_back_c0_hazard \n" " .endm \n"); #else __asm__(" .macro back_to_back_c0_hazard \n" " .set noreorder \n" " _ssnop \n" " _ssnop \n" " _ssnop \n" " .set reorder \n" " .endm"); #endif #define back_to_back_c0_hazard() \ __asm__ __volatile__("back_to_back_c0_hazard") /* * Instruction execution hazard */ #ifdef CONFIG_CPU_MIPSR2 /* * gcc has a tradition of misscompiling the previous construct using the * address of a label as argument to inline assembler. Gas otoh has the * annoying difference between la and dla which are only usable for 32-bit * rsp. 64-bit code, so can't be used without conditional compilation. * The alterantive is switching the assembler to 64-bit code which happens * to work right even for 32-bit code ... */ #define instruction_hazard() \ do { \ unsigned long tmp; \ \ __asm__ __volatile__( \ " .set mips64r2 \n" \ " dla %0, 1f \n" \ " jr.hb %0 \n" \ " .set mips0 \n" \ "1: \n" \ : "=r" (tmp)); \ } while (0) #else #define instruction_hazard() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_HAZARDS_H */