1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
|
/*
* Broadcom BCMSDH to gSPI Protocol Conversion Layer
*
* Copyright (C) 1999-2012, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: bcmspibrcm.c 354197 2012-08-30 09:05:59Z $
*/
#define HSMODE
#include <typedefs.h>
#include <bcmdevs.h>
#include <bcmendian.h>
#include <bcmutils.h>
#include <osl.h>
#include <hndsoc.h>
#include <siutils.h>
#include <sbchipc.h>
#include <sbsdio.h> /* SDIO device core hardware definitions. */
#include <spid.h>
#include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */
#include <sdiovar.h> /* ioctl/iovars */
#include <sdio.h> /* SDIO Device and Protocol Specs */
#include <pcicfg.h>
#include <bcmspibrcm.h>
#ifdef BCMSPI_ANDROID
extern void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen);
#else
#include <bcmspi.h>
#endif /* BCMSPI_ANDROID */
/* these are for the older cores... for newer cores we have control for each of them */
#define F0_RESPONSE_DELAY 16
#define F1_RESPONSE_DELAY 16
#define F2_RESPONSE_DELAY F0_RESPONSE_DELAY
#define GSPI_F0_RESP_DELAY 0
#define GSPI_F1_RESP_DELAY F1_RESPONSE_DELAY
#define GSPI_F2_RESP_DELAY 0
#define GSPI_F3_RESP_DELAY 0
#define CMDLEN 4
#define DWORDMODE_ON (sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 2) && (sd->dwordmode == TRUE)
/* Globals */
#if defined(DHD_DEBUG)
uint sd_msglevel = SDH_ERROR_VAL;
#else
uint sd_msglevel = 0;
#endif
uint sd_hiok = FALSE; /* Use hi-speed mode if available? */
uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */
uint sd_f2_blocksize = 64; /* Default blocksize */
uint sd_divisor = 2;
uint sd_power = 1; /* Default to SD Slot powered ON */
uint sd_clock = 1; /* Default to SD Clock turned ON */
uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */
uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
uint8 spi_outbuf[SPI_MAX_PKT_LEN];
uint8 spi_inbuf[SPI_MAX_PKT_LEN];
/* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits
* assuming we will not exceed F0 response delay > 100 bytes at 48MHz.
*/
#define BUF2_PKT_LEN 128
uint8 spi_outbuf2[BUF2_PKT_LEN];
uint8 spi_inbuf2[BUF2_PKT_LEN];
/* Prototypes */
static bool bcmspi_test_card(sdioh_info_t *sd);
static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd);
static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode);
static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
uint32 *data, uint32 datalen);
static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 *data);
static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 data);
static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr,
uint8 *data);
static int bcmspi_driver_init(sdioh_info_t *sd);
static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
uint32 addr, int nbytes, uint32 *data);
static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize,
uint32 *data);
static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer);
static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg);
/*
* Public entry points & extern's
*/
extern sdioh_info_t *
sdioh_attach(osl_t *osh, void *bar0, uint irq)
{
sdioh_info_t *sd;
sd_trace(("%s\n", __FUNCTION__));
if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
return NULL;
}
bzero((char *)sd, sizeof(sdioh_info_t));
sd->osh = osh;
if (spi_osinit(sd) != 0) {
sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return NULL;
}
#ifndef BCMSPI_ANDROID
sd->bar0 = bar0;
#endif /* !BCMSPI_ANDROID */
sd->irq = irq;
#ifndef BCMSPI_ANDROID
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
sd->intr_handler_valid = FALSE;
#endif /* !BCMSPI_ANDROID */
/* Set defaults */
sd->use_client_ints = TRUE;
sd->sd_use_dma = FALSE; /* DMA Not supported */
/* Spi device default is 16bit mode, change to 4 when device is changed to 32bit
* mode
*/
sd->wordlen = 2;
#ifndef BCMSPI_ANDROID
if (!spi_hw_attach(sd)) {
sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
#endif /* !BCMSPI_ANDROID */
if (bcmspi_driver_init(sd) != SUCCESS) {
sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__));
#ifndef BCMSPI_ANDROID
spi_hw_detach(sd);
#endif /* !BCMSPI_ANDROID */
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
if (spi_register_irq(sd, irq) != SUCCESS) {
sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
#ifndef BCMSPI_ANDROID
spi_hw_detach(sd);
#endif /* !BCMSPI_ANDROID */
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
sd_trace(("%s: Done\n", __FUNCTION__));
return sd;
}
extern SDIOH_API_RC
sdioh_detach(osl_t *osh, sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if (sd) {
sd_err(("%s: detaching from hardware\n", __FUNCTION__));
spi_free_irq(sd->irq, sd);
#ifndef BCMSPI_ANDROID
spi_hw_detach(sd);
#endif /* !BCMSPI_ANDROID */
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
}
return SDIOH_API_RC_SUCCESS;
}
/* Configure callback to client when we recieve client interrupt */
extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
{
#ifndef BCMSPI_ANDROID
sd_trace(("%s: Entering\n", __FUNCTION__));
sd->intr_handler = fn;
sd->intr_handler_arg = argh;
sd->intr_handler_valid = TRUE;
#endif /* !BCMSPI_ANDROID */
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t *sd)
{
#ifndef BCMSPI_ANDROID
sd_trace(("%s: Entering\n", __FUNCTION__));
sd->intr_handler_valid = FALSE;
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
#endif /* !BCMSPI_ANDROID */
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
{
#ifndef BCMSPI_ANDROID
sd_trace(("%s: Entering\n", __FUNCTION__));
*onoff = sd->client_intr_enabled;
#endif /* !BCMSPI_ANDROID */
return SDIOH_API_RC_SUCCESS;
}
#if defined(DHD_DEBUG)
extern bool
sdioh_interrupt_pending(sdioh_info_t *sd)
{
return 0;
}
#endif
extern SDIOH_API_RC
sdioh_query_device(sdioh_info_t *sd)
{
/* Return a BRCM ID appropriate to the dongle class */
return (sd->num_funcs > 1) ? BCM4329_D11N_ID : BCM4318_D11G_ID;
}
/* Provide dstatus bits of spi-transaction for dhd layers. */
extern uint32
sdioh_get_dstatus(sdioh_info_t *sd)
{
return sd->card_dstatus;
}
extern void
sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev)
{
sd->chip = chip;
sd->chiprev = chiprev;
}
extern void
sdioh_dwordmode(sdioh_info_t *sd, bool set)
{
uint8 reg = 0;
int status;
if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) !=
SUCCESS) {
sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
return;
}
if (set) {
reg |= DWORD_PKT_LEN_EN;
sd->dwordmode = TRUE;
sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */
} else {
reg &= ~DWORD_PKT_LEN_EN;
sd->dwordmode = FALSE;
sd->client_block_size[SPI_FUNC_2] = 2048;
}
if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) !=
SUCCESS) {
sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
return;
}
}
uint
sdioh_query_iofnum(sdioh_info_t *sd)
{
return sd->num_funcs;
}
/* IOVar table */
enum {
IOV_MSGLEVEL = 1,
IOV_BLOCKMODE,
IOV_BLOCKSIZE,
IOV_DMA,
IOV_USEINTS,
IOV_NUMINTS,
IOV_NUMLOCALINTS,
IOV_HOSTREG,
IOV_DEVREG,
IOV_DIVISOR,
IOV_SDMODE,
IOV_HISPEED,
IOV_HCIREGS,
IOV_POWER,
IOV_CLOCK,
IOV_SPIERRSTATS,
IOV_RESP_DELAY_ALL
};
const bcm_iovar_t sdioh_iovars[] = {
{"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 },
{"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */
{"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 },
{"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 },
{"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 },
{"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 },
{"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 },
{"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 },
{"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 },
{"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100},
{"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0},
{"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) },
{"spi_respdelay", IOV_RESP_DELAY_ALL, 0, IOVT_BOOL, 0 },
{NULL, 0, 0, 0, 0 }
};
int
sdioh_iovar_op(sdioh_info_t *si, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
int32 int_val = 0;
bool bool_val;
uint32 actionid;
/*
sdioh_regs_t *regs;
*/
ASSERT(name);
ASSERT(len >= 0);
/* Get must have return space; Set does not take qualifiers */
ASSERT(set || (arg && len));
ASSERT(!set || (!params && !plen));
sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
bcmerror = BCME_UNSUPPORTED;
goto exit;
}
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
goto exit;
/* Set up params so get and set can share the convenience variables */
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
val_size = sizeof(int);
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
bool_val = (int_val != 0) ? TRUE : FALSE;
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
switch (actionid) {
case IOV_GVAL(IOV_MSGLEVEL):
int_val = (int32)sd_msglevel;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MSGLEVEL):
sd_msglevel = int_val;
break;
case IOV_GVAL(IOV_BLOCKSIZE):
if ((uint32)int_val > si->num_funcs) {
bcmerror = BCME_BADARG;
break;
}
int_val = (int32)si->client_block_size[int_val];
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_DMA):
int_val = (int32)si->sd_use_dma;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DMA):
si->sd_use_dma = (bool)int_val;
break;
case IOV_GVAL(IOV_USEINTS):
int_val = (int32)si->use_client_ints;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_USEINTS):
break;
case IOV_GVAL(IOV_DIVISOR):
int_val = (uint32)sd_divisor;
bcopy(&int_val, arg, val_size);
break;
#ifndef BCMSPI_ANDROID
case IOV_SVAL(IOV_DIVISOR):
sd_divisor = int_val;
if (!spi_start_clock(si, (uint16)sd_divisor)) {
sd_err(("%s: set clock failed\n", __FUNCTION__));
bcmerror = BCME_ERROR;
}
break;
#endif /* !BCMSPI_ANDROID */
case IOV_GVAL(IOV_POWER):
int_val = (uint32)sd_power;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_POWER):
sd_power = int_val;
break;
case IOV_GVAL(IOV_CLOCK):
int_val = (uint32)sd_clock;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_CLOCK):
sd_clock = int_val;
break;
case IOV_GVAL(IOV_SDMODE):
int_val = (uint32)sd_sdmode;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SDMODE):
sd_sdmode = int_val;
break;
case IOV_GVAL(IOV_HISPEED):
int_val = (uint32)sd_hiok;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_HISPEED):
sd_hiok = int_val;
if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) {
sd_err(("%s: Failed changing highspeed mode to %d.\n",
__FUNCTION__, sd_hiok));
bcmerror = BCME_ERROR;
return ERROR;
}
break;
case IOV_GVAL(IOV_NUMINTS):
int_val = (int32)si->intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_NUMLOCALINTS):
int_val = (int32)si->local_intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data;
if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
int_val = (int)data;
bcopy(&int_val, arg, sizeof(int_val));
break;
}
case IOV_SVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data = (uint8)sd_ptr->value;
if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
break;
}
case IOV_GVAL(IOV_SPIERRSTATS):
{
bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t));
break;
}
case IOV_SVAL(IOV_SPIERRSTATS):
{
bzero(&si->spierrstats, sizeof(struct spierrstats_t));
break;
}
case IOV_GVAL(IOV_RESP_DELAY_ALL):
int_val = (int32)si->resp_delay_all;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RESP_DELAY_ALL):
si->resp_delay_all = (bool)int_val;
int_val = STATUS_ENABLE|INTR_WITH_STATUS;
if (si->resp_delay_all)
int_val |= RESP_DELAY_ALL;
else {
if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1,
F1_RESPONSE_DELAY) != SUCCESS) {
sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
break;
}
}
if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val)
!= SUCCESS) {
sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
break;
}
break;
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
return bcmerror;
}
extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
SDIOH_API_RC status;
/* No lock needed since sdioh_request_byte does locking */
status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
/* No lock needed since sdioh_request_byte does locking */
SDIOH_API_RC status;
if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) {
uint8 dummy_data;
status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data);
if (status) {
sd_err(("sdioh_cfg_read() failed.\n"));
return status;
}
}
status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
{
uint32 count;
int offset;
uint32 cis_byte;
uint16 *cis = (uint16 *)cisd;
uint bar0 = SI_ENUM_BASE;
int status;
uint8 data;
sd_trace(("%s: Func %d\n", __FUNCTION__, func));
spi_lock(sd);
/* Set sb window address to 0x18000000 */
data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data);
if (status == SUCCESS) {
data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data);
} else {
sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
if (status == SUCCESS) {
data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data);
} else {
sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
offset = CC_SROM_OTP; /* OTP offset in chipcommon. */
for (count = 0; count < length/2; count++) {
if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) {
sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
*cis = (uint16)cis_byte;
cis++;
offset += 2;
}
spi_unlock(sd);
return (BCME_OK);
}
extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
uint32 data = (uint32)(*byte);
spi_lock(sd);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
if (rw == SDIOH_READ) {
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr));
} else {
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, data));
}
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) {
spi_unlock(sd);
return status;
}
if (rw == SDIOH_READ) {
*byte = (uint8)data;
sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte));
}
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus=0x%x\n", dstatus));
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
uint32 *word, uint nbytes)
{
int status;
spi_lock(sd);
if (rw == SDIOH_READ)
status = bcmspi_card_regread(sd, func, addr, nbytes, word);
else
status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word);
spi_unlock(sd);
return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
}
extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
{
int len;
int buflen = (int)buflen_u;
bool fifo = (fix_inc == SDIOH_DATA_FIX);
spi_lock(sd);
ASSERT(reg_width == 4);
ASSERT(buflen_u < (1 << 30));
ASSERT(sd->client_block_size[func]);
sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
__FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
buflen_u, sd->r_cnt, sd->t_cnt, pkt));
/* Break buffer down into blocksize chunks. */
while (buflen > 0) {
len = MIN(sd->client_block_size[func], buflen);
if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
sd_err(("%s: bcmspi_card_buf %s failed\n",
__FUNCTION__, rw == SDIOH_READ ? "Read" : "Write"));
spi_unlock(sd);
return SDIOH_API_RC_FAIL;
}
buffer += len;
buflen -= len;
if (!fifo)
addr += len;
}
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
/* This function allows write to gspi bus when another rd/wr function is deep down the call stack.
* Its main aim is to have simpler spi writes rather than recursive writes.
* e.g. When there is a need to program response delay on the fly after detecting the SPI-func
* this call will allow to program the response delay.
*/
static int
bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte)
{
uint32 cmd_arg;
uint32 datalen = 1;
uint32 hostlen;
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen);
sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
datalen = ROUNDUP(datalen, sd->wordlen);
/* Start by copying command in the spi-outbuffer */
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)spi_outbuf2 = bcmswap32(cmd_arg);
if (datalen & 0x3)
datalen += (4 - (datalen & 0x3));
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint16 *)spi_outbuf2 = bcmswap16(cmd_arg & 0xffff);
*(uint16 *)&spi_outbuf2[2] = bcmswap16((cmd_arg & 0xffff0000) >> 16);
if (datalen & 0x1)
datalen++;
} else {
sd_err(("%s: Host is %d bit spid, could not create SPI command.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
/* for Write, put the data into the output buffer */
if (datalen != 0) {
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)&spi_outbuf2[CMDLEN] = bcmswap32(byte);
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint16 *)&spi_outbuf2[CMDLEN] = bcmswap16(byte & 0xffff);
*(uint16 *)&spi_outbuf2[CMDLEN + 2] =
bcmswap16((byte & 0xffff0000) >> 16);
}
}
/* +4 for cmd, +4 for dstatus */
hostlen = datalen + 8;
hostlen += (4 - (hostlen & 0x3));
spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN ]) |
(bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN + 2]) << 16));
} else {
sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus)
sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus));
return (BCME_OK);
}
/* Program the response delay corresponding to the spi function */
static int
bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay)
{
if (sd->resp_delay_all == FALSE)
return (BCME_OK);
if (sd->prev_fun == func)
return (BCME_OK);
if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY)
return (BCME_OK);
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay);
/* Remember function for which to avoid reprogramming resp-delay in next iteration */
sd->prev_fun = func;
return (BCME_OK);
}
#define GSPI_RESYNC_PATTERN 0x0
/* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI.
* It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is
* synchronised and all queued resuests are cancelled.
*/
static int
bcmspi_resync_f1(sdioh_info_t *sd)
{
uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0;
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
datalen = ROUNDUP(datalen, sd->wordlen);
/* Start by copying command in the spi-outbuffer */
*(uint32 *)spi_outbuf2 = cmd_arg;
/* for Write, put the data into the output buffer */
*(uint32 *)&spi_outbuf2[CMDLEN] = data;
/* +4 for cmd, +4 for dstatus */
spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN ]) |
(bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN + 2]) << 16));
} else {
sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus)
sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus));
return (BCME_OK);
}
uint32 dstatus_count = 0;
static int
bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg)
{
uint32 dstatus = sd->card_dstatus;
struct spierrstats_t *spierrstats = &sd->spierrstats;
int err = SUCCESS;
sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus));
/* Store dstatus of last few gSPI transactions */
spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus;
spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg;
dstatus_count++;
if (sd->card_init_done == FALSE)
return err;
if (dstatus & STATUS_DATA_NOT_AVAILABLE) {
spierrstats->dna++;
sd_trace(("Read data not available on F1 addr = 0x%x\n",
GFIELD(cmd_arg, SPI_REG_ADDR)));
/* Clear dna bit */
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE);
}
if (dstatus & STATUS_UNDERFLOW) {
spierrstats->rdunderflow++;
sd_err(("FIFO underflow happened due to current F2 read command.\n"));
}
if (dstatus & STATUS_OVERFLOW) {
spierrstats->wroverflow++;
sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n"));
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW);
bcmspi_resync_f1(sd);
sd_err(("Recovering from F1 FIFO overflow.\n"));
}
if (dstatus & STATUS_F2_INTR) {
spierrstats->f2interrupt++;
sd_trace(("Interrupt from F2. SW should clear corresponding IntStatus bits\n"));
}
if (dstatus & STATUS_F3_INTR) {
spierrstats->f3interrupt++;
sd_err(("Interrupt from F3. SW should clear corresponding IntStatus bits\n"));
}
if (dstatus & STATUS_HOST_CMD_DATA_ERR) {
spierrstats->hostcmddataerr++;
sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n"));
}
if (dstatus & STATUS_F2_PKT_AVAILABLE) {
spierrstats->f2pktavailable++;
sd_trace(("Packet is available/ready in F2 TX FIFO\n"));
sd_trace(("Packet length = %d\n", sd->dwordmode ?
((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) :
((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT)));
}
if (dstatus & STATUS_F3_PKT_AVAILABLE) {
spierrstats->f3pktavailable++;
sd_err(("Packet is available/ready in F3 TX FIFO\n"));
sd_err(("Packet length = %d\n",
(dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT));
}
return err;
}
extern int
sdioh_abort(sdioh_info_t *sd, uint func)
{
return 0;
}
int
sdioh_start(sdioh_info_t *sd, int stage)
{
return SUCCESS;
}
int
sdioh_stop(sdioh_info_t *sd)
{
return SUCCESS;
}
int
sdioh_waitlockfree(sdioh_info_t *sd)
{
return SUCCESS;
}
/*
* Private/Static work routines
*/
static int
bcmspi_host_init(sdioh_info_t *sd)
{
/* Default power on mode */
sd->sd_mode = SDIOH_MODE_SPI;
sd->polled_mode = TRUE;
sd->host_init_done = TRUE;
sd->card_init_done = FALSE;
sd->adapter_slot = 1;
return (SUCCESS);
}
static int
get_client_blocksize(sdioh_info_t *sd)
{
uint32 regdata[2];
int status;
/* Find F1/F2/F3 max packet size */
if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG,
8, regdata)) != SUCCESS) {
return status;
}
sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n",
regdata[0], regdata[1]));
sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2;
sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1]));
ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1);
sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2;
sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2]));
ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2);
sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2;
sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3]));
ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3);
return 0;
}
static int
bcmspi_client_init(sdioh_info_t *sd)
{
uint32 status_en_reg = 0;
sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
#ifndef BCMSPI_ANDROID
#ifdef HSMODE
if (!spi_start_clock(sd, (uint16)sd_divisor)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#else
/* Start at ~400KHz clock rate for initialization */
if (!spi_start_clock(sd, 128)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#endif /* HSMODE */
#endif /* !BCMSPI_ANDROID */
if (!bcmspi_host_device_init_adapt(sd)) {
sd_err(("bcmspi_host_device_init_adapt failed\n"));
return ERROR;
}
if (!bcmspi_test_card(sd)) {
sd_err(("bcmspi_test_card failed\n"));
return ERROR;
}
sd->num_funcs = SPI_MAX_IOFUNCS;
get_client_blocksize(sd);
/* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */
bcmspi_resync_f1(sd);
sd->dwordmode = FALSE;
bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg);
sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__));
status_en_reg |= INTR_WITH_STATUS;
if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1,
status_en_reg & 0xff) != SUCCESS) {
sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__));
return ERROR;
}
#ifndef HSMODE
#ifndef BCMSPI_ANDROID
/* After configuring for High-Speed mode, set the desired clock rate. */
if (!spi_start_clock(sd, 4)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#endif /* !BCMSPI_ANDROID */
#endif /* HSMODE */
/* check to see if the response delay needs to be programmed properly */
{
uint32 f1_respdelay = 0;
bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay);
if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) {
/* older sdiodevice core and has no separte resp delay for each of */
sd_err(("older corerev < 4 so use the same resp delay for all funcs\n"));
sd->resp_delay_new = FALSE;
}
else {
/* older sdiodevice core and has no separte resp delay for each of */
int ret_val;
sd->resp_delay_new = TRUE;
sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n"));
sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n",
GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY,
GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY));
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1,
GSPI_F0_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1,
GSPI_F1_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1,
GSPI_F2_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1,
GSPI_F3_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
return ERROR;
}
}
}
sd->card_init_done = TRUE;
/* get the device rev to program the prop respdelays */
return SUCCESS;
}
static int
bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode)
{
uint32 regdata;
int status;
if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG,
4, ®data)) != SUCCESS)
return status;
sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata));
if (hsmode == TRUE) {
sd_trace(("Attempting to enable High-Speed mode.\n"));
if (regdata & HIGH_SPEED_MODE) {
sd_trace(("Device is already in High-Speed mode.\n"));
return status;
} else {
regdata |= HIGH_SPEED_MODE;
sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
4, regdata)) != SUCCESS) {
return status;
}
}
} else {
sd_trace(("Attempting to disable High-Speed mode.\n"));
if (regdata & HIGH_SPEED_MODE) {
regdata &= ~HIGH_SPEED_MODE;
sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
4, regdata)) != SUCCESS)
return status;
}
else {
sd_trace(("Device is already in Low-Speed mode.\n"));
return status;
}
}
#ifndef BCMSPI_ANDROID
spi_controller_highspeed_mode(sd, hsmode);
#endif /* !BCMSPI_ANDROID */
return TRUE;
}
#define bcmspi_find_curr_mode(sd) { \
sd->wordlen = 2; \
status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \
regdata &= 0xff; \
if ((regdata == 0xad) || (regdata == 0x5b) || \
(regdata == 0x5d) || (regdata == 0x5a)) \
break; \
sd->wordlen = 4; \
status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \
regdata &= 0xff; \
if ((regdata == 0xad) || (regdata == 0x5b) || \
(regdata == 0x5d) || (regdata == 0x5a)) \
break; \
sd_trace(("Silicon testability issue: regdata = 0x%x." \
" Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \
OSL_DELAY(100000); \
}
#define INIT_ADAPT_LOOP 100
/* Adapt clock-phase-speed-bitwidth between host and device */
static bool
bcmspi_host_device_init_adapt(sdioh_info_t *sd)
{
uint32 wrregdata, regdata = 0;
int status;
int i;
/* Due to a silicon testability issue, the first command from the Host
* to the device will get corrupted (first bit will be lost). So the
* Host should poll the device with a safe read request. ie: The Host
* should try to read F0 addr 0x14 using the Fixed address mode
* (This will prevent a unintended write command to be detected by device)
*/
for (i = 0; i < INIT_ADAPT_LOOP; i++) {
/* If device was not power-cycled it will stay in 32bit mode with
* response-delay-all bit set. Alternate the iteration so that
* read either with or without response-delay for F0 to succeed.
*/
bcmspi_find_curr_mode(sd);
sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE;
bcmspi_find_curr_mode(sd);
sd->dwordmode = TRUE;
bcmspi_find_curr_mode(sd);
sd->dwordmode = FALSE;
}
/* Bail out, device not detected */
if (i == INIT_ADAPT_LOOP)
return FALSE;
/* Softreset the spid logic */
if ((sd->dwordmode) || (sd->wordlen == 4)) {
bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI);
bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, ®data);
sd_trace(("reset reg read = 0x%x\n", regdata));
sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode,
sd->wordlen, sd->resp_delay_all));
/* Restore default state after softreset */
sd->wordlen = 2;
sd->dwordmode = FALSE;
}
if (sd->wordlen == 4) {
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) !=
SUCCESS)
return FALSE;
if (regdata == TEST_RO_DATA_32BIT_LE) {
sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n",
regdata));
sd_trace(("Spid power was left on.\n"));
} else {
sd_err(("Spid power was left on but signature read failed."
" Value read = 0x%x\n", regdata));
return FALSE;
}
} else {
sd->wordlen = 2;
#define CTRL_REG_DEFAULT 0x00010430 /* according to the host m/c */
wrregdata = (CTRL_REG_DEFAULT);
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS)
return FALSE;
sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata));
#ifndef HSMODE
wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY);
wrregdata &= ~HIGH_SPEED_MODE;
bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
#endif /* HSMODE */
for (i = 0; i < INIT_ADAPT_LOOP; i++) {
if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) {
sd_trace(("0xfeedbead was leftshifted by 1-bit.\n"));
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4,
®data)) != SUCCESS)
return FALSE;
}
OSL_DELAY(1000);
}
/* Change to host controller intr-polarity of active-low */
wrregdata &= ~INTR_POLARITY;
sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n",
wrregdata));
/* Change to 32bit mode */
wrregdata |= WORD_LENGTH_32;
bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
/* Change command/data packaging in 32bit LE mode */
sd->wordlen = 4;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS)
return FALSE;
if (regdata == TEST_RO_DATA_32BIT_LE) {
sd_trace(("Read spid passed. Value read = 0x%x\n", regdata));
sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n"));
} else {
sd_err(("Stale spid reg values read as it was kept powered. Value read ="
"0x%x\n", regdata));
return FALSE;
}
}
return TRUE;
}
static bool
bcmspi_test_card(sdioh_info_t *sd)
{
uint32 regdata;
int status;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS)
return FALSE;
if (regdata == (TEST_RO_DATA_32BIT_LE))
sd_trace(("32bit LE regdata = 0x%x\n", regdata));
else {
sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata));
return FALSE;
}
#define RW_PATTERN1 0xA0A1A2A3
#define RW_PATTERN2 0x4B5B6B7B
regdata = RW_PATTERN1;
if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
return FALSE;
regdata = 0;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS)
return FALSE;
if (regdata != RW_PATTERN1) {
sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
RW_PATTERN1, regdata));
return FALSE;
} else
sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
regdata = RW_PATTERN2;
if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
return FALSE;
regdata = 0;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS)
return FALSE;
if (regdata != RW_PATTERN2) {
sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
RW_PATTERN2, regdata));
return FALSE;
} else
sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
return TRUE;
}
static int
bcmspi_driver_init(sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if ((bcmspi_host_init(sd)) != SUCCESS) {
return ERROR;
}
if (bcmspi_client_init(sd) != SUCCESS) {
return ERROR;
}
return SUCCESS;
}
/* Read device reg */
static int
bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
int status;
uint32 cmd_arg, dstatus;
ASSERT(regsize);
if (func == 2)
sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
static int
bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
ASSERT(regsize);
if (func == 2)
sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); /* Fixed access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize);
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
return status;
sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data));
bcmspi_cmd_getdstatus(sd, &dstatus);
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
/* write a device register */
static int
bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
{
int status;
uint32 cmd_arg, dstatus;
ASSERT(regsize);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize, data));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus=0x%x\n", dstatus));
return SUCCESS;
}
/* write a device register - 1 byte */
static int
bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
uint32 data = (uint32)(*byte);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, data));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
void
bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer)
{
*dstatus_buffer = sd->card_dstatus;
}
/* 'data' is of type uint32 whereas other buffers are of type uint8 */
static int
bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
uint32 *data, uint32 datalen)
{
uint32 i, j;
uint8 resp_delay = 0;
int err = SUCCESS;
uint32 hostlen;
uint32 spilen = 0;
uint32 dstatus_idx = 0;
uint16 templen, buslen, len, *ptr = NULL;
sd_trace(("spi cmd = 0x%x\n", cmd_arg));
if (DWORDMODE_ON) {
spilen = GFIELD(cmd_arg, SPI_LEN);
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_0) ||
(GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_1))
dstatus_idx = spilen * 3;
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) &&
(GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) {
spilen = spilen << 2;
dstatus_idx = (spilen % 16) ? (16 - (spilen % 16)) : 0;
/* convert len to mod16 size */
spilen = ROUNDUP(spilen, 16);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
}
}
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)spi_outbuf = bcmswap32(cmd_arg);
if (datalen & 0x3)
datalen += (4 - (datalen & 0x3));
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint16 *)spi_outbuf = bcmswap16(cmd_arg & 0xffff);
*(uint16 *)&spi_outbuf[2] = bcmswap16((cmd_arg & 0xffff0000) >> 16);
if (datalen & 0x1)
datalen++;
if (datalen < 4)
datalen = ROUNDUP(datalen, 4);
} else {
sd_err(("Host is %d bit spid, could not create SPI command.\n",
8 * sd->wordlen));
return ERROR;
}
/* for Write, put the data into the output buffer */
if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) {
/* We send len field of hw-header always a mod16 size, both from host and dongle */
if (DWORDMODE_ON) {
if (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) {
ptr = (uint16 *)&data[0];
templen = *ptr;
/* ASSERT(*ptr == ~*(ptr + 1)); */
templen = ROUNDUP(templen, 16);
*ptr = templen;
sd_trace(("actual tx len = %d\n", (uint16)(~*(ptr+1))));
}
}
if (datalen != 0) {
for (i = 0; i < datalen/4; i++) {
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
bcmswap32(data[i]);
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint16 *)&spi_outbuf[i * 4 + CMDLEN] =
bcmswap16(data[i] & 0xffff);
*(uint16 *)&spi_outbuf[i * 4 + CMDLEN + 2] =
bcmswap16((data[i] & 0xffff0000) >> 16);
}
}
}
}
/* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */
if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) {
int func = GFIELD(cmd_arg, SPI_FUNCTION);
switch (func) {
case 0:
if (sd->resp_delay_new)
resp_delay = GSPI_F0_RESP_DELAY;
else
resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0;
break;
case 1:
if (sd->resp_delay_new)
resp_delay = GSPI_F1_RESP_DELAY;
else
resp_delay = F1_RESPONSE_DELAY;
break;
case 2:
if (sd->resp_delay_new)
resp_delay = GSPI_F2_RESP_DELAY;
else
resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0;
break;
default:
ASSERT(0);
break;
}
/* Program response delay */
if (sd->resp_delay_new == FALSE)
bcmspi_prog_resp_delay(sd, func, resp_delay);
}
/* +4 for cmd and +4 for dstatus */
hostlen = datalen + 8 + resp_delay;
hostlen += dstatus_idx;
#ifdef BCMSPI_ANDROID
if (hostlen%4) {
sd_err(("Unaligned data len %d, hostlen %d\n",
datalen, hostlen));
#endif /* BCMSPI_ANDROID */
hostlen += (4 - (hostlen & 0x3));
#ifdef BCMSPI_ANDROID
}
#endif /* BCMSPI_ANDROID */
spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen);
/* for Read, get the data into the input buffer */
if (datalen != 0) {
if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */
for (j = 0; j < datalen/4; j++) {
if (sd->wordlen == 4) { /* 32bit spid */
data[j] = bcmswap32(*(uint32 *)&spi_inbuf[j * 4 +
CMDLEN + resp_delay]);
} else if (sd->wordlen == 2) { /* 16bit spid */
data[j] = (bcmswap16(*(uint16 *)&spi_inbuf[j * 4 +
CMDLEN + resp_delay])) |
((bcmswap16(*(uint16 *)&spi_inbuf[j * 4 +
CMDLEN + resp_delay + 2])) << 16);
}
}
if ((DWORDMODE_ON) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
ptr = (uint16 *)&data[0];
templen = *ptr;
buslen = len = ~(*(ptr + 1));
buslen = ROUNDUP(buslen, 16);
/* populate actual len in hw-header */
if (templen == buslen)
*ptr = len;
}
}
}
/* Restore back the len field of the hw header */
if (DWORDMODE_ON) {
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) &&
(GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) {
ptr = (uint16 *)&data[0];
*ptr = (uint16)(~*(ptr+1));
}
}
dstatus_idx += (datalen + CMDLEN + resp_delay);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf[dstatus_idx]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf[dstatus_idx]) |
(bcmswap16(*(uint16 *)&spi_inbuf[dstatus_idx + 2]) << 16));
} else {
sd_err(("Host is %d bit machine, could not read SPI dstatus.\n",
8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus == 0xffffffff) {
sd_err(("looks like not a GSPI device or device is not powered.\n"));
}
err = bcmspi_update_stats(sd, cmd_arg);
return err;
}
static int
bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
uint32 addr, int nbytes, uint32 *data)
{
int status;
uint32 cmd_arg;
bool write = rw == SDIOH_READ ? 0 : 1;
uint retries = 0;
bool enable;
uint32 spilen;
cmd_arg = 0;
ASSERT(nbytes);
ASSERT(nbytes <= sd->client_block_size[func]);
if (write) sd->t_cnt++; else sd->r_cnt++;
if (func == 2) {
/* Frame len check limited by gSPI. */
if ((nbytes > 2000) && write) {
sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes));
}
/* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */
/* If F2 fifo on device is not ready to receive data, don't do F2 transfer */
if (write) {
uint32 dstatus;
/* check F2 ready with cached one */
bcmspi_cmd_getdstatus(sd, &dstatus);
if ((dstatus & STATUS_F2_RX_READY) == 0) {
retries = WAIT_F2RXFIFORDY;
enable = 0;
while (retries-- && !enable) {
OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000);
bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4,
&dstatus);
if (dstatus & STATUS_F2_RX_READY)
enable = TRUE;
}
if (!enable) {
struct spierrstats_t *spierrstats = &sd->spierrstats;
spierrstats->f2rxnotready++;
sd_err(("F2 FIFO is not ready to receive data.\n"));
return ERROR;
}
sd_trace(("No of retries on F2 ready %d\n",
(WAIT_F2RXFIFORDY - retries)));
}
}
}
/* F2 transfers happen on 0 addr */
addr = (func == 2) ? 0 : addr;
/* In pio mode buffer is read using fixed address fifo in func 1 */
if ((func == 1) && (fifo))
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);
else
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write);
spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes);
if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
/* convert len to mod4 size */
spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
} else
cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen);
if ((func == 2) && (fifo == 1)) {
sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, write ? "Wr" : "Rd", func, "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
}
sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, write ? "Wd" : "Rd", func, "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) {
sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__,
(write ? "write" : "read")));
return status;
}
/* gSPI expects that hw-header-len is equal to spi-command-len */
if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) {
ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff));
ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16)));
}
if ((nbytes > 2000) && !write) {
sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes));
}
return SUCCESS;
}
/* Reset and re-initialize the device */
int
sdioh_sdio_reset(sdioh_info_t *si)
{
si->card_init_done = FALSE;
return bcmspi_client_init(si);
}
SDIOH_API_RC
sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio)
{
return SDIOH_API_RC_FAIL;
}
SDIOH_API_RC
sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab)
{
return SDIOH_API_RC_FAIL;
}
bool
sdioh_gpioin(sdioh_info_t *sd, uint32 gpio)
{
return FALSE;
}
SDIOH_API_RC
sdioh_gpio_init(sdioh_info_t *sd)
{
return SDIOH_API_RC_FAIL;
}
|