aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-sh64/dma-mapping.h
blob: c7c0f059cdc4ff57e464d6beccef50e384dd2b17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#ifndef __ASM_SH_DMA_MAPPING_H
#define __ASM_SH_DMA_MAPPING_H

#include <linux/mm.h>
#include <asm/scatterlist.h>
#include <asm/io.h>

struct pci_dev;
extern void *consistent_alloc(struct pci_dev *hwdev, size_t size,
				    dma_addr_t *dma_handle);
extern void consistent_free(struct pci_dev *hwdev, size_t size,
				  void *vaddr, dma_addr_t dma_handle);

#define dma_supported(dev, mask)	(1)

static inline int dma_set_mask(struct device *dev, u64 mask)
{
	if (!dev->dma_mask || !dma_supported(dev, mask))
		return -EIO;

	*dev->dma_mask = mask;

	return 0;
}

static inline void *dma_alloc_coherent(struct device *dev, size_t size,
			 dma_addr_t *dma_handle, gfp_t flag)
{
	return consistent_alloc(NULL, size, dma_handle);
}

static inline void dma_free_coherent(struct device *dev, size_t size,
		       void *vaddr, dma_addr_t dma_handle)
{
	consistent_free(NULL, size, vaddr, dma_handle);
}

#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1)

static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
				  enum dma_data_direction dir)
{
	dma_cache_wback_inv((unsigned long)vaddr, size);
}

static inline dma_addr_t dma_map_single(struct device *dev,
					void *ptr, size_t size,
					enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
	if (dev->bus == &pci_bus_type)
		return virt_to_bus(ptr);
#endif
	dma_cache_sync(dev, ptr, size, dir);

	return virt_to_bus(ptr);
}

#define dma_unmap_single(dev, addr, size, dir)	do { } while (0)

static inline int dma_map_sg(struct device *dev, struct scatterlist *sg,
			     int nents, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < nents; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
		dma_cache_sync(dev, page_address(sg[i].page) + sg[i].offset,
			       sg[i].length, dir);
#endif
		sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
	}

	return nents;
}

#define dma_unmap_sg(dev, sg, nents, dir)	do { } while (0)

static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
				      unsigned long offset, size_t size,
				      enum dma_data_direction dir)
{
	return dma_map_single(dev, page_address(page) + offset, size, dir);
}

static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
				  size_t size, enum dma_data_direction dir)
{
	dma_unmap_single(dev, dma_address, size, dir);
}

static inline void dma_sync_single(struct device *dev, dma_addr_t dma_handle,
				   size_t size, enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
	if (dev->bus == &pci_bus_type)
		return;
#endif
	dma_cache_sync(dev, bus_to_virt(dma_handle), size, dir);
}

static inline void dma_sync_single_range(struct device *dev,
					 dma_addr_t dma_handle,
					 unsigned long offset, size_t size,
					 enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
	if (dev->bus == &pci_bus_type)
		return;
#endif
	dma_cache_sync(dev, bus_to_virt(dma_handle) + offset, size, dir);
}

static inline void dma_sync_sg(struct device *dev, struct scatterlist *sg,
			       int nelems, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < nelems; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
		dma_cache_sync(dev, page_address(sg[i].page) + sg[i].offset,
			       sg[i].length, dir);
#endif
		sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
	}
}

static inline void dma_sync_single_for_cpu(struct device *dev,
					   dma_addr_t dma_handle, size_t size,
					   enum dma_data_direction dir)
{
	dma_sync_single(dev, dma_handle, size, dir);
}

static inline void dma_sync_single_for_device(struct device *dev,
					   dma_addr_t dma_handle, size_t size,
					   enum dma_data_direction dir)
{
	dma_sync_single(dev, dma_handle, size, dir);
}

static inline void dma_sync_sg_for_cpu(struct device *dev,
				       struct scatterlist *sg, int nelems,
				       enum dma_data_direction dir)
{
	dma_sync_sg(dev, sg, nelems, dir);
}

static inline void dma_sync_sg_for_device(struct device *dev,
				       struct scatterlist *sg, int nelems,
				       enum dma_data_direction dir)
{
	dma_sync_sg(dev, sg, nelems, dir);
}

static inline int dma_get_cache_alignment(void)
{
	/*
	 * Each processor family will define its own L1_CACHE_SHIFT,
	 * L1_CACHE_BYTES wraps to this, so this is always safe.
	 */
	return L1_CACHE_BYTES;
}

static inline int dma_mapping_error(dma_addr_t dma_addr)
{
	return dma_addr == 0;
}

#endif /* __ASM_SH_DMA_MAPPING_H */