summaryrefslogtreecommitdiffstats
path: root/jni/feature_stab/db_vlvm/db_utilities_linalg.cpp
blob: 4147dce5e0a83cebc52f9b881db511c6cb9bae8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* $Id: db_utilities_linalg.cpp,v 1.3 2011/06/17 14:03:31 mbansal Exp $ */

#include "db_utilities_linalg.h"
#include "db_utilities.h"



/*****************************************************************
*    Lean and mean begins here                                   *
*****************************************************************/

/*Cholesky-factorize symmetric positive definite 6 x 6 matrix A. Upper
part of A is used from the input. The Cholesky factor is output as
subdiagonal part in A and diagonal in d, which is 6-dimensional*/
void db_CholeskyDecomp6x6(double A[36],double d[6])
{
    double s,temp;

    /*[50 mult 35 add 6sqrt=85flops 6func]*/
    /*i=0*/
    s=A[0];
    d[0]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[0]);
    A[6]=A[1]*temp;
    A[12]=A[2]*temp;
    A[18]=A[3]*temp;
    A[24]=A[4]*temp;
    A[30]=A[5]*temp;
    /*i=1*/
    s=A[7]-A[6]*A[6];
    d[1]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[1]);
    A[13]=(A[8]-A[6]*A[12])*temp;
    A[19]=(A[9]-A[6]*A[18])*temp;
    A[25]=(A[10]-A[6]*A[24])*temp;
    A[31]=(A[11]-A[6]*A[30])*temp;
    /*i=2*/
    s=A[14]-A[12]*A[12]-A[13]*A[13];
    d[2]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[2]);
    A[20]=(A[15]-A[12]*A[18]-A[13]*A[19])*temp;
    A[26]=(A[16]-A[12]*A[24]-A[13]*A[25])*temp;
    A[32]=(A[17]-A[12]*A[30]-A[13]*A[31])*temp;
    /*i=3*/
    s=A[21]-A[18]*A[18]-A[19]*A[19]-A[20]*A[20];
    d[3]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[3]);
    A[27]=(A[22]-A[18]*A[24]-A[19]*A[25]-A[20]*A[26])*temp;
    A[33]=(A[23]-A[18]*A[30]-A[19]*A[31]-A[20]*A[32])*temp;
    /*i=4*/
    s=A[28]-A[24]*A[24]-A[25]*A[25]-A[26]*A[26]-A[27]*A[27];
    d[4]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[4]);
    A[34]=(A[29]-A[24]*A[30]-A[25]*A[31]-A[26]*A[32]-A[27]*A[33])*temp;
    /*i=5*/
    s=A[35]-A[30]*A[30]-A[31]*A[31]-A[32]*A[32]-A[33]*A[33]-A[34]*A[34];
    d[5]=((s>0.0)?sqrt(s):1.0);
}

/*Cholesky-factorize symmetric positive definite n x n matrix A.Part
above diagonal of A is used from the input, diagonal of A is assumed to
be stored in d. The Cholesky factor is output as
subdiagonal part in A and diagonal in d, which is n-dimensional*/
void db_CholeskyDecompSeparateDiagonal(double **A,double *d,int n)
{
    int i,j,k;
    double s,temp;

    for(i=0;i<n;i++) for(j=i;j<n;j++)
    {
        if(i==j) s=d[i];
        else s=A[i][j];
        for(k=i-1;k>=0;k--) s-=A[i][k]*A[j][k];
        if(i==j)
        {
            d[i]=((s>0.0)?sqrt(s):1.0);
            temp=db_SafeReciprocal(d[i]);
        }
        else A[j][i]=s*temp;
    }
}

/*Backsubstitute L%transpose(L)*x=b for x given the Cholesky decomposition
of an n x n matrix and the right hand side b. The vector b is unchanged*/
void db_CholeskyBacksub(double *x,const double * const *A,const double *d,int n,const double *b)
{
    int i,k;
    double s;

    for(i=0;i<n;i++)
    {
        for(s=b[i],k=i-1;k>=0;k--) s-=A[i][k]*x[k];
        x[i]=db_SafeDivision(s,d[i]);
    }
    for(i=n-1;i>=0;i--)
    {
        for(s=x[i],k=i+1;k<n;k++) s-=A[k][i]*x[k];
        x[i]=db_SafeDivision(s,d[i]);
    }
}

/*Cholesky-factorize symmetric positive definite 3 x 3 matrix A. Part
above diagonal of A is used from the input, diagonal of A is assumed to
be stored in d. The Cholesky factor is output as subdiagonal part in A
and diagonal in d, which is 3-dimensional*/
void db_CholeskyDecomp3x3SeparateDiagonal(double A[9],double d[3])
{
    double s,temp;

    /*i=0*/
    s=d[0];
    d[0]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[0]);
    A[3]=A[1]*temp;
    A[6]=A[2]*temp;
    /*i=1*/
    s=d[1]-A[3]*A[3];
    d[1]=((s>0.0)?sqrt(s):1.0);
    temp=db_SafeReciprocal(d[1]);
    A[7]=(A[5]-A[3]*A[6])*temp;
    /*i=2*/
    s=d[2]-A[6]*A[6]-A[7]*A[7];
    d[2]=((s>0.0)?sqrt(s):1.0);
}

/*Backsubstitute L%transpose(L)*x=b for x given the Cholesky decomposition
of a 3 x 3 matrix and the right hand side b. The vector b is unchanged*/
void db_CholeskyBacksub3x3(double x[3],const double A[9],const double d[3],const double b[3])
{
    /*[42 mult 30 add=72flops]*/
    x[0]=db_SafeDivision(b[0],d[0]);
    x[1]=db_SafeDivision((b[1]-A[3]*x[0]),d[1]);
    x[2]=db_SafeDivision((b[2]-A[6]*x[0]-A[7]*x[1]),d[2]);
    x[2]=db_SafeDivision(x[2],d[2]);
    x[1]=db_SafeDivision((x[1]-A[7]*x[2]),d[1]);
    x[0]=db_SafeDivision((x[0]-A[6]*x[2]-A[3]*x[1]),d[0]);
}

/*Backsubstitute L%transpose(L)*x=b for x given the Cholesky decomposition
of a 6 x 6 matrix and the right hand side b. The vector b is unchanged*/
void db_CholeskyBacksub6x6(double x[6],const double A[36],const double d[6],const double b[6])
{
    /*[42 mult 30 add=72flops]*/
    x[0]=db_SafeDivision(b[0],d[0]);
    x[1]=db_SafeDivision((b[1]-A[6]*x[0]),d[1]);
    x[2]=db_SafeDivision((b[2]-A[12]*x[0]-A[13]*x[1]),d[2]);
    x[3]=db_SafeDivision((b[3]-A[18]*x[0]-A[19]*x[1]-A[20]*x[2]),d[3]);
    x[4]=db_SafeDivision((b[4]-A[24]*x[0]-A[25]*x[1]-A[26]*x[2]-A[27]*x[3]),d[4]);
    x[5]=db_SafeDivision((b[5]-A[30]*x[0]-A[31]*x[1]-A[32]*x[2]-A[33]*x[3]-A[34]*x[4]),d[5]);
    x[5]=db_SafeDivision(x[5],d[5]);
    x[4]=db_SafeDivision((x[4]-A[34]*x[5]),d[4]);
    x[3]=db_SafeDivision((x[3]-A[33]*x[5]-A[27]*x[4]),d[3]);
    x[2]=db_SafeDivision((x[2]-A[32]*x[5]-A[26]*x[4]-A[20]*x[3]),d[2]);
    x[1]=db_SafeDivision((x[1]-A[31]*x[5]-A[25]*x[4]-A[19]*x[3]-A[13]*x[2]),d[1]);
    x[0]=db_SafeDivision((x[0]-A[30]*x[5]-A[24]*x[4]-A[18]*x[3]-A[12]*x[2]-A[6]*x[1]),d[0]);
}


void db_Orthogonalize6x7(double A[42],int orthonormalize)
{
    int i;
    double ss[6];

    /*Compute square sums of rows*/
    ss[0]=db_SquareSum7(A);
    ss[1]=db_SquareSum7(A+7);
    ss[2]=db_SquareSum7(A+14);
    ss[3]=db_SquareSum7(A+21);
    ss[4]=db_SquareSum7(A+28);
    ss[5]=db_SquareSum7(A+35);

    ss[1]-=db_OrthogonalizePair7(A+7 ,A,ss[0]);
    ss[2]-=db_OrthogonalizePair7(A+14,A,ss[0]);
    ss[3]-=db_OrthogonalizePair7(A+21,A,ss[0]);
    ss[4]-=db_OrthogonalizePair7(A+28,A,ss[0]);
    ss[5]-=db_OrthogonalizePair7(A+35,A,ss[0]);

    /*Pivot on largest ss (could also be done on ss/(original_ss))*/
    i=db_MaxIndex5(ss+1);
    db_OrthogonalizationSwap7(A+7,i,ss+1);

    ss[2]-=db_OrthogonalizePair7(A+14,A+7,ss[1]);
    ss[3]-=db_OrthogonalizePair7(A+21,A+7,ss[1]);
    ss[4]-=db_OrthogonalizePair7(A+28,A+7,ss[1]);
    ss[5]-=db_OrthogonalizePair7(A+35,A+7,ss[1]);

    i=db_MaxIndex4(ss+2);
    db_OrthogonalizationSwap7(A+14,i,ss+2);

    ss[3]-=db_OrthogonalizePair7(A+21,A+14,ss[2]);
    ss[4]-=db_OrthogonalizePair7(A+28,A+14,ss[2]);
    ss[5]-=db_OrthogonalizePair7(A+35,A+14,ss[2]);

    i=db_MaxIndex3(ss+3);
    db_OrthogonalizationSwap7(A+21,i,ss+3);

    ss[4]-=db_OrthogonalizePair7(A+28,A+21,ss[3]);
    ss[5]-=db_OrthogonalizePair7(A+35,A+21,ss[3]);

    i=db_MaxIndex2(ss+4);
    db_OrthogonalizationSwap7(A+28,i,ss+4);

    ss[5]-=db_OrthogonalizePair7(A+35,A+28,ss[4]);

    if(orthonormalize)
    {
        db_MultiplyScalar7(A   ,db_SafeSqrtReciprocal(ss[0]));
        db_MultiplyScalar7(A+7 ,db_SafeSqrtReciprocal(ss[1]));
        db_MultiplyScalar7(A+14,db_SafeSqrtReciprocal(ss[2]));
        db_MultiplyScalar7(A+21,db_SafeSqrtReciprocal(ss[3]));
        db_MultiplyScalar7(A+28,db_SafeSqrtReciprocal(ss[4]));
        db_MultiplyScalar7(A+35,db_SafeSqrtReciprocal(ss[5]));
    }
}

void db_Orthogonalize8x9(double A[72],int orthonormalize)
{
    int i;
    double ss[8];

    /*Compute square sums of rows*/
    ss[0]=db_SquareSum9(A);
    ss[1]=db_SquareSum9(A+9);
    ss[2]=db_SquareSum9(A+18);
    ss[3]=db_SquareSum9(A+27);
    ss[4]=db_SquareSum9(A+36);
    ss[5]=db_SquareSum9(A+45);
    ss[6]=db_SquareSum9(A+54);
    ss[7]=db_SquareSum9(A+63);

    ss[1]-=db_OrthogonalizePair9(A+9 ,A,ss[0]);
    ss[2]-=db_OrthogonalizePair9(A+18,A,ss[0]);
    ss[3]-=db_OrthogonalizePair9(A+27,A,ss[0]);
    ss[4]-=db_OrthogonalizePair9(A+36,A,ss[0]);
    ss[5]-=db_OrthogonalizePair9(A+45,A,ss[0]);
    ss[6]-=db_OrthogonalizePair9(A+54,A,ss[0]);
    ss[7]-=db_OrthogonalizePair9(A+63,A,ss[0]);

    /*Pivot on largest ss (could also be done on ss/(original_ss))*/
    i=db_MaxIndex7(ss+1);
    db_OrthogonalizationSwap9(A+9,i,ss+1);

    ss[2]-=db_OrthogonalizePair9(A+18,A+9,ss[1]);
    ss[3]-=db_OrthogonalizePair9(A+27,A+9,ss[1]);
    ss[4]-=db_OrthogonalizePair9(A+36,A+9,ss[1]);
    ss[5]-=db_OrthogonalizePair9(A+45,A+9,ss[1]);
    ss[6]-=db_OrthogonalizePair9(A+54,A+9,ss[1]);
    ss[7]-=db_OrthogonalizePair9(A+63,A+9,ss[1]);

    i=db_MaxIndex6(ss+2);
    db_OrthogonalizationSwap9(A+18,i,ss+2);

    ss[3]-=db_OrthogonalizePair9(A+27,A+18,ss[2]);
    ss[4]-=db_OrthogonalizePair9(A+36,A+18,ss[2]);
    ss[5]-=db_OrthogonalizePair9(A+45,A+18,ss[2]);
    ss[6]-=db_OrthogonalizePair9(A+54,A+18,ss[2]);
    ss[7]-=db_OrthogonalizePair9(A+63,A+18,ss[2]);

    i=db_MaxIndex5(ss+3);
    db_OrthogonalizationSwap9(A+27,i,ss+3);

    ss[4]-=db_OrthogonalizePair9(A+36,A+27,ss[3]);
    ss[5]-=db_OrthogonalizePair9(A+45,A+27,ss[3]);
    ss[6]-=db_OrthogonalizePair9(A+54,A+27,ss[3]);
    ss[7]-=db_OrthogonalizePair9(A+63,A+27,ss[3]);

    i=db_MaxIndex4(ss+4);
    db_OrthogonalizationSwap9(A+36,i,ss+4);

    ss[5]-=db_OrthogonalizePair9(A+45,A+36,ss[4]);
    ss[6]-=db_OrthogonalizePair9(A+54,A+36,ss[4]);
    ss[7]-=db_OrthogonalizePair9(A+63,A+36,ss[4]);

    i=db_MaxIndex3(ss+5);
    db_OrthogonalizationSwap9(A+45,i,ss+5);

    ss[6]-=db_OrthogonalizePair9(A+54,A+45,ss[5]);
    ss[7]-=db_OrthogonalizePair9(A+63,A+45,ss[5]);

    i=db_MaxIndex2(ss+6);
    db_OrthogonalizationSwap9(A+54,i,ss+6);

    ss[7]-=db_OrthogonalizePair9(A+63,A+54,ss[6]);

    if(orthonormalize)
    {
        db_MultiplyScalar9(A   ,db_SafeSqrtReciprocal(ss[0]));
        db_MultiplyScalar9(A+9 ,db_SafeSqrtReciprocal(ss[1]));
        db_MultiplyScalar9(A+18,db_SafeSqrtReciprocal(ss[2]));
        db_MultiplyScalar9(A+27,db_SafeSqrtReciprocal(ss[3]));
        db_MultiplyScalar9(A+36,db_SafeSqrtReciprocal(ss[4]));
        db_MultiplyScalar9(A+45,db_SafeSqrtReciprocal(ss[5]));
        db_MultiplyScalar9(A+54,db_SafeSqrtReciprocal(ss[6]));
        db_MultiplyScalar9(A+63,db_SafeSqrtReciprocal(ss[7]));
    }
}

void db_NullVectorOrthonormal6x7(double x[7],const double A[42])
{
    int i;
    double omss[7];
    const double *B;

    /*Pivot by choosing row of the identity matrix
    (the one corresponding to column of A with smallest square sum)*/
    omss[0]=db_SquareSum6Stride7(A);
    omss[1]=db_SquareSum6Stride7(A+1);
    omss[2]=db_SquareSum6Stride7(A+2);
    omss[3]=db_SquareSum6Stride7(A+3);
    omss[4]=db_SquareSum6Stride7(A+4);
    omss[5]=db_SquareSum6Stride7(A+5);
    omss[6]=db_SquareSum6Stride7(A+6);
    i=db_MinIndex7(omss);
    /*orthogonalize that row against all previous rows
    and normalize it*/
    B=A+i;
    db_MultiplyScalarCopy7(x,A,-B[0]);
    db_RowOperation7(x,A+7 ,B[7]);
    db_RowOperation7(x,A+14,B[14]);
    db_RowOperation7(x,A+21,B[21]);
    db_RowOperation7(x,A+28,B[28]);
    db_RowOperation7(x,A+35,B[35]);
    x[i]+=1.0;
    db_MultiplyScalar7(x,db_SafeSqrtReciprocal(1.0-omss[i]));
}

void db_NullVectorOrthonormal8x9(double x[9],const double A[72])
{
    int i;
    double omss[9];
    const double *B;

    /*Pivot by choosing row of the identity matrix
    (the one corresponding to column of A with smallest square sum)*/
    omss[0]=db_SquareSum8Stride9(A);
    omss[1]=db_SquareSum8Stride9(A+1);
    omss[2]=db_SquareSum8Stride9(A+2);
    omss[3]=db_SquareSum8Stride9(A+3);
    omss[4]=db_SquareSum8Stride9(A+4);
    omss[5]=db_SquareSum8Stride9(A+5);
    omss[6]=db_SquareSum8Stride9(A+6);
    omss[7]=db_SquareSum8Stride9(A+7);
    omss[8]=db_SquareSum8Stride9(A+8);
    i=db_MinIndex9(omss);
    /*orthogonalize that row against all previous rows
    and normalize it*/
    B=A+i;
    db_MultiplyScalarCopy9(x,A,-B[0]);
    db_RowOperation9(x,A+9 ,B[9]);
    db_RowOperation9(x,A+18,B[18]);
    db_RowOperation9(x,A+27,B[27]);
    db_RowOperation9(x,A+36,B[36]);
    db_RowOperation9(x,A+45,B[45]);
    db_RowOperation9(x,A+54,B[54]);
    db_RowOperation9(x,A+63,B[63]);
    x[i]+=1.0;
    db_MultiplyScalar9(x,db_SafeSqrtReciprocal(1.0-omss[i]));
}