summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/locations.h
blob: 09bbb330421bb524e94eb041922e38d277af658a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_OPTIMIZING_LOCATIONS_H_
#define ART_COMPILER_OPTIMIZING_LOCATIONS_H_

#include "base/arena_object.h"
#include "base/bit_field.h"
#include "base/bit_vector.h"
#include "base/value_object.h"
#include "utils/growable_array.h"

namespace art {

class HConstant;
class HInstruction;
class Location;

std::ostream& operator<<(std::ostream& os, const Location& location);

/**
 * A Location is an abstraction over the potential location
 * of an instruction. It could be in register or stack.
 */
class Location : public ValueObject {
 public:
  enum OutputOverlap {
    kOutputOverlap,
    kNoOutputOverlap
  };

  enum Kind {
    kInvalid = 0,
    kConstant = 1,
    kStackSlot = 2,  // 32bit stack slot.
    kDoubleStackSlot = 3,  // 64bit stack slot.

    kRegister = 4,  // Core register.

    // We do not use the value 5 because it conflicts with kLocationConstantMask.
    kDoNotUse5 = 5,

    kFpuRegister = 6,  // Float register.

    kRegisterPair = 7,  // Long register.

    kFpuRegisterPair = 8,  // Double register.

    // We do not use the value 9 because it conflicts with kLocationConstantMask.
    kDoNotUse9 = 9,

    // Unallocated location represents a location that is not fixed and can be
    // allocated by a register allocator.  Each unallocated location has
    // a policy that specifies what kind of location is suitable. Payload
    // contains register allocation policy.
    kUnallocated = 10,
  };

  Location() : value_(kInvalid) {
    // Verify that non-constant location kinds do not interfere with kConstant.
    static_assert((kInvalid & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kUnallocated & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kStackSlot & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kDoubleStackSlot & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kRegister & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kFpuRegister & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kRegisterPair & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kFpuRegisterPair & kLocationConstantMask) != kConstant, "TagError");
    static_assert((kConstant & kLocationConstantMask) == kConstant, "TagError");

    DCHECK(!IsValid());
  }

  Location(const Location& other) : ValueObject(), value_(other.value_) {}

  Location& operator=(const Location& other) {
    value_ = other.value_;
    return *this;
  }

  bool IsConstant() const {
    return (value_ & kLocationConstantMask) == kConstant;
  }

  static Location ConstantLocation(HConstant* constant) {
    DCHECK(constant != nullptr);
    return Location(kConstant | reinterpret_cast<uintptr_t>(constant));
  }

  HConstant* GetConstant() const {
    DCHECK(IsConstant());
    return reinterpret_cast<HConstant*>(value_ & ~kLocationConstantMask);
  }

  bool IsValid() const {
    return value_ != kInvalid;
  }

  bool IsInvalid() const {
    return !IsValid();
  }

  // Empty location. Used if there the location should be ignored.
  static Location NoLocation() {
    return Location();
  }

  // Register locations.
  static Location RegisterLocation(int reg) {
    return Location(kRegister, reg);
  }

  static Location FpuRegisterLocation(int reg) {
    return Location(kFpuRegister, reg);
  }

  static Location RegisterPairLocation(int low, int high) {
    return Location(kRegisterPair, low << 16 | high);
  }

  static Location FpuRegisterPairLocation(int low, int high) {
    return Location(kFpuRegisterPair, low << 16 | high);
  }

  bool IsRegister() const {
    return GetKind() == kRegister;
  }

  bool IsFpuRegister() const {
    return GetKind() == kFpuRegister;
  }

  bool IsRegisterPair() const {
    return GetKind() == kRegisterPair;
  }

  bool IsFpuRegisterPair() const {
    return GetKind() == kFpuRegisterPair;
  }

  bool IsRegisterKind() const {
    return IsRegister() || IsFpuRegister() || IsRegisterPair() || IsFpuRegisterPair();
  }

  int reg() const {
    DCHECK(IsRegister() || IsFpuRegister());
    return GetPayload();
  }

  int low() const {
    DCHECK(IsPair());
    return GetPayload() >> 16;
  }

  int high() const {
    DCHECK(IsPair());
    return GetPayload() & 0xFFFF;
  }

  template <typename T>
  T AsRegister() const {
    DCHECK(IsRegister());
    return static_cast<T>(reg());
  }

  template <typename T>
  T AsFpuRegister() const {
    DCHECK(IsFpuRegister());
    return static_cast<T>(reg());
  }

  template <typename T>
  T AsRegisterPairLow() const {
    DCHECK(IsRegisterPair());
    return static_cast<T>(low());
  }

  template <typename T>
  T AsRegisterPairHigh() const {
    DCHECK(IsRegisterPair());
    return static_cast<T>(high());
  }

  template <typename T>
  T AsFpuRegisterPairLow() const {
    DCHECK(IsFpuRegisterPair());
    return static_cast<T>(low());
  }

  template <typename T>
  T AsFpuRegisterPairHigh() const {
    DCHECK(IsFpuRegisterPair());
    return static_cast<T>(high());
  }

  bool IsPair() const {
    return IsRegisterPair() || IsFpuRegisterPair();
  }

  Location ToLow() const {
    if (IsRegisterPair()) {
      return Location::RegisterLocation(low());
    } else if (IsFpuRegisterPair()) {
      return Location::FpuRegisterLocation(low());
    } else {
      DCHECK(IsDoubleStackSlot());
      return Location::StackSlot(GetStackIndex());
    }
  }

  Location ToHigh() const {
    if (IsRegisterPair()) {
      return Location::RegisterLocation(high());
    } else if (IsFpuRegisterPair()) {
      return Location::FpuRegisterLocation(high());
    } else {
      DCHECK(IsDoubleStackSlot());
      return Location::StackSlot(GetHighStackIndex(4));
    }
  }

  static uintptr_t EncodeStackIndex(intptr_t stack_index) {
    DCHECK(-kStackIndexBias <= stack_index);
    DCHECK(stack_index < kStackIndexBias);
    return static_cast<uintptr_t>(kStackIndexBias + stack_index);
  }

  static Location StackSlot(intptr_t stack_index) {
    uintptr_t payload = EncodeStackIndex(stack_index);
    Location loc(kStackSlot, payload);
    // Ensure that sign is preserved.
    DCHECK_EQ(loc.GetStackIndex(), stack_index);
    return loc;
  }

  bool IsStackSlot() const {
    return GetKind() == kStackSlot;
  }

  static Location DoubleStackSlot(intptr_t stack_index) {
    uintptr_t payload = EncodeStackIndex(stack_index);
    Location loc(kDoubleStackSlot, payload);
    // Ensure that sign is preserved.
    DCHECK_EQ(loc.GetStackIndex(), stack_index);
    return loc;
  }

  bool IsDoubleStackSlot() const {
    return GetKind() == kDoubleStackSlot;
  }

  intptr_t GetStackIndex() const {
    DCHECK(IsStackSlot() || IsDoubleStackSlot());
    // Decode stack index manually to preserve sign.
    return GetPayload() - kStackIndexBias;
  }

  intptr_t GetHighStackIndex(uintptr_t word_size) const {
    DCHECK(IsDoubleStackSlot());
    // Decode stack index manually to preserve sign.
    return GetPayload() - kStackIndexBias + word_size;
  }

  Kind GetKind() const {
    return IsConstant() ? kConstant : KindField::Decode(value_);
  }

  bool Equals(Location other) const {
    return value_ == other.value_;
  }

  bool Contains(Location other) const {
    if (Equals(other)) {
      return true;
    } else if (IsPair() || IsDoubleStackSlot()) {
      return ToLow().Equals(other) || ToHigh().Equals(other);
    }
    return false;
  }

  bool OverlapsWith(Location other) const {
    // Only check the overlapping case that can happen with our register allocation algorithm.
    bool overlap = Contains(other) || other.Contains(*this);
    if (kIsDebugBuild && !overlap) {
      // Note: These are also overlapping cases. But we are not able to handle them in
      // ParallelMoveResolverWithSwap. Make sure that we do not meet such case with our compiler.
      if ((IsPair() && other.IsPair()) || (IsDoubleStackSlot() && other.IsDoubleStackSlot())) {
        DCHECK(!Contains(other.ToLow()));
        DCHECK(!Contains(other.ToHigh()));
      }
    }
    return overlap;
  }

  const char* DebugString() const {
    switch (GetKind()) {
      case kInvalid: return "I";
      case kRegister: return "R";
      case kStackSlot: return "S";
      case kDoubleStackSlot: return "DS";
      case kUnallocated: return "U";
      case kConstant: return "C";
      case kFpuRegister: return "F";
      case kRegisterPair: return "RP";
      case kFpuRegisterPair: return "FP";
      case kDoNotUse5:  // fall-through
      case kDoNotUse9:
        LOG(FATAL) << "Should not use this location kind";
    }
    UNREACHABLE();
    return "?";
  }

  // Unallocated locations.
  enum Policy {
    kAny,
    kRequiresRegister,
    kRequiresFpuRegister,
    kSameAsFirstInput,
  };

  bool IsUnallocated() const {
    return GetKind() == kUnallocated;
  }

  static Location UnallocatedLocation(Policy policy) {
    return Location(kUnallocated, PolicyField::Encode(policy));
  }

  // Any free register is suitable to replace this unallocated location.
  static Location Any() {
    return UnallocatedLocation(kAny);
  }

  static Location RequiresRegister() {
    return UnallocatedLocation(kRequiresRegister);
  }

  static Location RequiresFpuRegister() {
    return UnallocatedLocation(kRequiresFpuRegister);
  }

  static Location RegisterOrConstant(HInstruction* instruction);
  static Location RegisterOrInt32LongConstant(HInstruction* instruction);
  static Location ByteRegisterOrConstant(int reg, HInstruction* instruction);

  // The location of the first input to the instruction will be
  // used to replace this unallocated location.
  static Location SameAsFirstInput() {
    return UnallocatedLocation(kSameAsFirstInput);
  }

  Policy GetPolicy() const {
    DCHECK(IsUnallocated());
    return PolicyField::Decode(GetPayload());
  }

  uintptr_t GetEncoding() const {
    return GetPayload();
  }

 private:
  // Number of bits required to encode Kind value.
  static constexpr uint32_t kBitsForKind = 4;
  static constexpr uint32_t kBitsForPayload = kBitsPerIntPtrT - kBitsForKind;
  static constexpr uintptr_t kLocationConstantMask = 0x3;

  explicit Location(uintptr_t value) : value_(value) {}

  Location(Kind kind, uintptr_t payload)
      : value_(KindField::Encode(kind) | PayloadField::Encode(payload)) {}

  uintptr_t GetPayload() const {
    return PayloadField::Decode(value_);
  }

  typedef BitField<Kind, 0, kBitsForKind> KindField;
  typedef BitField<uintptr_t, kBitsForKind, kBitsForPayload> PayloadField;

  // Layout for kUnallocated locations payload.
  typedef BitField<Policy, 0, 3> PolicyField;

  // Layout for stack slots.
  static const intptr_t kStackIndexBias =
      static_cast<intptr_t>(1) << (kBitsForPayload - 1);

  // Location either contains kind and payload fields or a tagged handle for
  // a constant locations. Values of enumeration Kind are selected in such a
  // way that none of them can be interpreted as a kConstant tag.
  uintptr_t value_;
};
std::ostream& operator<<(std::ostream& os, const Location::Kind& rhs);
std::ostream& operator<<(std::ostream& os, const Location::Policy& rhs);

class RegisterSet : public ValueObject {
 public:
  RegisterSet() : core_registers_(0), floating_point_registers_(0) {}

  void Add(Location loc) {
    if (loc.IsRegister()) {
      core_registers_ |= (1 << loc.reg());
    } else {
      DCHECK(loc.IsFpuRegister());
      floating_point_registers_ |= (1 << loc.reg());
    }
  }

  void Remove(Location loc) {
    if (loc.IsRegister()) {
      core_registers_ &= ~(1 << loc.reg());
    } else {
      DCHECK(loc.IsFpuRegister()) << loc;
      floating_point_registers_ &= ~(1 << loc.reg());
    }
  }

  bool ContainsCoreRegister(uint32_t id) {
    return Contains(core_registers_, id);
  }

  bool ContainsFloatingPointRegister(uint32_t id) {
    return Contains(floating_point_registers_, id);
  }

  static bool Contains(uint32_t register_set, uint32_t reg) {
    return (register_set & (1 << reg)) != 0;
  }

  size_t GetNumberOfRegisters() const {
    return __builtin_popcount(core_registers_) + __builtin_popcount(floating_point_registers_);
  }

  uint32_t GetCoreRegisters() const {
    return core_registers_;
  }

  uint32_t GetFloatingPointRegisters() const {
    return floating_point_registers_;
  }

 private:
  uint32_t core_registers_;
  uint32_t floating_point_registers_;

  DISALLOW_COPY_AND_ASSIGN(RegisterSet);
};

static constexpr bool kIntrinsified = true;

/**
 * The code generator computes LocationSummary for each instruction so that
 * the instruction itself knows what code to generate: where to find the inputs
 * and where to place the result.
 *
 * The intent is to have the code for generating the instruction independent of
 * register allocation. A register allocator just has to provide a LocationSummary.
 */
class LocationSummary : public ArenaObject<kArenaAllocMisc> {
 public:
  enum CallKind {
    kNoCall,
    kCallOnSlowPath,
    kCall
  };

  LocationSummary(HInstruction* instruction,
                  CallKind call_kind = kNoCall,
                  bool intrinsified = false);

  void SetInAt(uint32_t at, Location location) {
    DCHECK(inputs_.Get(at).IsUnallocated() || inputs_.Get(at).IsInvalid());
    inputs_.Put(at, location);
  }

  Location InAt(uint32_t at) const {
    return inputs_.Get(at);
  }

  size_t GetInputCount() const {
    return inputs_.Size();
  }

  void SetOut(Location location, Location::OutputOverlap overlaps = Location::kOutputOverlap) {
    DCHECK(output_.IsInvalid());
    output_overlaps_ = overlaps;
    output_ = location;
  }

  void UpdateOut(Location location) {
    // There are two reasons for updating an output:
    // 1) Parameters, where we only know the exact stack slot after
    //    doing full register allocation.
    // 2) Unallocated location.
    DCHECK(output_.IsStackSlot() || output_.IsDoubleStackSlot() || output_.IsUnallocated());
    output_ = location;
  }

  void AddTemp(Location location) {
    temps_.Add(location);
  }

  Location GetTemp(uint32_t at) const {
    return temps_.Get(at);
  }

  void SetTempAt(uint32_t at, Location location) {
    DCHECK(temps_.Get(at).IsUnallocated() || temps_.Get(at).IsInvalid());
    temps_.Put(at, location);
  }

  size_t GetTempCount() const {
    return temps_.Size();
  }

  Location Out() const { return output_; }

  bool CanCall() const { return call_kind_ != kNoCall; }
  bool WillCall() const { return call_kind_ == kCall; }
  bool OnlyCallsOnSlowPath() const { return call_kind_ == kCallOnSlowPath; }
  bool NeedsSafepoint() const { return CanCall(); }

  void SetStackBit(uint32_t index) {
    stack_mask_->SetBit(index);
  }

  void ClearStackBit(uint32_t index) {
    stack_mask_->ClearBit(index);
  }

  void SetRegisterBit(uint32_t reg_id) {
    register_mask_ |= (1 << reg_id);
  }

  uint32_t GetRegisterMask() const {
    return register_mask_;
  }

  bool RegisterContainsObject(uint32_t reg_id) {
    return RegisterSet::Contains(register_mask_, reg_id);
  }

  void AddLiveRegister(Location location) {
    live_registers_.Add(location);
  }

  BitVector* GetStackMask() const {
    return stack_mask_;
  }

  RegisterSet* GetLiveRegisters() {
    return &live_registers_;
  }

  size_t GetNumberOfLiveRegisters() const {
    return live_registers_.GetNumberOfRegisters();
  }

  bool OutputUsesSameAs(uint32_t input_index) const {
    return (input_index == 0)
        && output_.IsUnallocated()
        && (output_.GetPolicy() == Location::kSameAsFirstInput);
  }

  bool IsFixedInput(uint32_t input_index) const {
    Location input = inputs_.Get(input_index);
    return input.IsRegister()
        || input.IsFpuRegister()
        || input.IsPair()
        || input.IsStackSlot()
        || input.IsDoubleStackSlot();
  }

  bool OutputCanOverlapWithInputs() const {
    return output_overlaps_ == Location::kOutputOverlap;
  }

  bool Intrinsified() const {
    return intrinsified_;
  }

 private:
  GrowableArray<Location> inputs_;
  GrowableArray<Location> temps_;
  // Whether the output overlaps with any of the inputs. If it overlaps, then it cannot
  // share the same register as the inputs.
  Location::OutputOverlap output_overlaps_;
  Location output_;
  const CallKind call_kind_;

  // Mask of objects that live in the stack.
  BitVector* stack_mask_;

  // Mask of objects that live in register.
  uint32_t register_mask_;

  // Registers that are in use at this position.
  RegisterSet live_registers_;

  // Whether these are locations for an intrinsified call.
  const bool intrinsified_;

  ART_FRIEND_TEST(RegisterAllocatorTest, ExpectedInRegisterHint);
  ART_FRIEND_TEST(RegisterAllocatorTest, SameAsFirstInputHint);
  DISALLOW_COPY_AND_ASSIGN(LocationSummary);
};

}  // namespace art

#endif  // ART_COMPILER_OPTIMIZING_LOCATIONS_H_