summaryrefslogtreecommitdiffstats
path: root/runtime/base/timing_logger.cc
blob: f1f6f9b1c1c659dc8b60e866a74c041d054982b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <stdio.h>
#include <cutils/trace.h>

#include "timing_logger.h"

#include "base/logging.h"
#include "base/stl_util.h"
#include "base/histogram-inl.h"
#include "base/time_utils.h"
#include "thread-inl.h"

#include <cmath>
#include <iomanip>

namespace art {

constexpr size_t CumulativeLogger::kLowMemoryBucketCount;
constexpr size_t CumulativeLogger::kDefaultBucketCount;
constexpr size_t TimingLogger::kIndexNotFound;

CumulativeLogger::CumulativeLogger(const std::string& name)
    : name_(name),
      lock_name_("CumulativeLoggerLock" + name),
      lock_(lock_name_.c_str(), kDefaultMutexLevel, true) {
  Reset();
}

CumulativeLogger::~CumulativeLogger() {
  STLDeleteElements(&histograms_);
}

void CumulativeLogger::SetName(const std::string& name) {
  MutexLock mu(Thread::Current(), lock_);
  name_.assign(name);
}

void CumulativeLogger::Start() {
}

void CumulativeLogger::End() {
  MutexLock mu(Thread::Current(), lock_);
  ++iterations_;
}

void CumulativeLogger::Reset() {
  MutexLock mu(Thread::Current(), lock_);
  iterations_ = 0;
  total_time_ = 0;
  STLDeleteElements(&histograms_);
}

void CumulativeLogger::AddLogger(const TimingLogger &logger) {
  MutexLock mu(Thread::Current(), lock_);
  TimingLogger::TimingData timing_data(logger.CalculateTimingData());
  const std::vector<TimingLogger::Timing>& timings = logger.GetTimings();
  for (size_t i = 0; i < timings.size(); ++i) {
    if (timings[i].IsStartTiming()) {
      AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i));
    }
  }
  ++iterations_;
}

size_t CumulativeLogger::GetIterations() const {
  MutexLock mu(Thread::Current(), lock_);
  return iterations_;
}

void CumulativeLogger::Dump(std::ostream &os) const {
  MutexLock mu(Thread::Current(), lock_);
  DumpHistogram(os);
}

void CumulativeLogger::AddPair(const std::string& label, uint64_t delta_time) {
  // Convert delta time to microseconds so that we don't overflow our counters.
  delta_time /= kAdjust;
  total_time_ += delta_time;
  Histogram<uint64_t>* histogram;
  Histogram<uint64_t> dummy(label.c_str());
  auto it = histograms_.find(&dummy);
  if (it == histograms_.end()) {
    const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ?
        kLowMemoryBucketCount : kDefaultBucketCount;
    histogram = new Histogram<uint64_t>(label.c_str(), kInitialBucketSize, max_buckets);
    histograms_.insert(histogram);
  } else {
    histogram = *it;
  }
  histogram->AddValue(delta_time);
}

class CompareHistorgramByTimeSpentDeclining {
 public:
  bool operator()(const Histogram<uint64_t>* a, const Histogram<uint64_t>* b) const {
    return a->Sum() > b->Sum();
  }
};

void CumulativeLogger::DumpHistogram(std::ostream &os) const {
  os << "Start Dumping histograms for " << iterations_ << " iterations"
     << " for " << name_ << "\n";
  std::set<Histogram<uint64_t>*, CompareHistorgramByTimeSpentDeclining>
      sorted_histograms(histograms_.begin(), histograms_.end());
  for (Histogram<uint64_t>* histogram : sorted_histograms) {
    Histogram<uint64_t>::CumulativeData cumulative_data;
    // We don't expect DumpHistogram to be called often, so it is not performance critical.
    histogram->CreateHistogram(&cumulative_data);
    histogram->PrintConfidenceIntervals(os, 0.99, cumulative_data);
  }
  os << "Done Dumping histograms \n";
}

TimingLogger::TimingLogger(const char* name, bool precise, bool verbose)
    : name_(name), precise_(precise), verbose_(verbose) {
}

void TimingLogger::Reset() {
  timings_.clear();
}

void TimingLogger::StartTiming(const char* label) {
  DCHECK(label != nullptr);
  timings_.push_back(Timing(NanoTime(), label));
  ATRACE_BEGIN(label);
}

void TimingLogger::EndTiming() {
  timings_.push_back(Timing(NanoTime(), nullptr));
  ATRACE_END();
}

uint64_t TimingLogger::GetTotalNs() const {
  if (timings_.size() < 2) {
    return 0;
  }
  return timings_.back().GetTime() - timings_.front().GetTime();
}

size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const {
  DCHECK_LT(start_idx, timings_.size());
  for (size_t i = start_idx; i < timings_.size(); ++i) {
    if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) {
      return i;
    }
  }
  return kIndexNotFound;
}

TimingLogger::TimingData TimingLogger::CalculateTimingData() const {
  TimingLogger::TimingData ret;
  ret.data_.resize(timings_.size());
  std::vector<size_t> open_stack;
  for (size_t i = 0; i < timings_.size(); ++i) {
    if (timings_[i].IsEndTiming()) {
      CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i;
      size_t open_idx = open_stack.back();
      uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime();
      ret.data_[open_idx].exclusive_time += time;
      DCHECK_EQ(ret.data_[open_idx].total_time, 0U);
      ret.data_[open_idx].total_time += time;
      // Each open split has exactly one end.
      open_stack.pop_back();
      // If there is a parent node, subtract from the exclusive time.
      if (!open_stack.empty()) {
        // Note this may go negative, but will work due to 2s complement when we add the value
        // total time value later.
        ret.data_[open_stack.back()].exclusive_time -= time;
      }
    } else {
      open_stack.push_back(i);
    }
  }
  CHECK(open_stack.empty()) << "Missing ending for timing "
      << timings_[open_stack.back()].GetName() << " at index " << open_stack.back();
  return ret;  // No need to fear, C++11 move semantics are here.
}

void TimingLogger::Dump(std::ostream &os, const char* indent_string) const {
  static constexpr size_t kFractionalDigits = 3;
  TimingLogger::TimingData timing_data(CalculateTimingData());
  uint64_t longest_split = 0;
  for (size_t i = 0; i < timings_.size(); ++i) {
    longest_split = std::max(longest_split, timing_data.GetTotalTime(i));
  }
  // Compute which type of unit we will use for printing the timings.
  TimeUnit tu = GetAppropriateTimeUnit(longest_split);
  uint64_t divisor = GetNsToTimeUnitDivisor(tu);
  uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1;
  // Print formatted splits.
  size_t tab_count = 1;
  os << name_ << " [Exclusive time] [Total time]\n";
  for (size_t i = 0; i < timings_.size(); ++i) {
    if (timings_[i].IsStartTiming()) {
      uint64_t exclusive_time = timing_data.GetExclusiveTime(i);
      uint64_t total_time = timing_data.GetTotalTime(i);
      if (!precise_) {
        // Make the fractional part 0.
        exclusive_time -= exclusive_time % mod_fraction;
        total_time -= total_time % mod_fraction;
      }
      for (size_t j = 0; j < tab_count; ++j) {
        os << indent_string;
      }
      os << FormatDuration(exclusive_time, tu, kFractionalDigits);
      // If they are the same, just print one value to prevent spam.
      if (exclusive_time != total_time) {
        os << "/" << FormatDuration(total_time, tu, kFractionalDigits);
      }
      os << " " << timings_[i].GetName() << "\n";
      ++tab_count;
    } else {
      --tab_count;
    }
  }
  os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n";
}

void TimingLogger::Verify() {
  size_t counts[2] = { 0 };
  for (size_t i = 0; i < timings_.size(); ++i) {
    if (i > 0) {
      CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime());
    }
    ++counts[timings_[i].IsStartTiming() ? 0 : 1];
  }
  CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match";
}

TimingLogger::~TimingLogger() {
  if (kIsDebugBuild) {
    Verify();
  }
}

}  // namespace art