summaryrefslogtreecommitdiffstats
path: root/runtime/thread_pool.cc
blob: 1e84c9ddb36e169be6601ac459a11dd9f64ca1e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "thread_pool.h"

#include "base/casts.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "runtime.h"
#include "thread-inl.h"

namespace art {

static constexpr bool kMeasureWaitTime = false;

ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
                                   size_t stack_size)
    : thread_pool_(thread_pool),
      name_(name) {
  std::string error_msg;
  stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
                                    false, false, &error_msg));
  CHECK(stack_.get() != nullptr) << error_msg;
  const char* reason = "new thread pool worker thread";
  pthread_attr_t attr;
  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
  CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
  CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
}

ThreadPoolWorker::~ThreadPoolWorker() {
  CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
}

void ThreadPoolWorker::Run() {
  Thread* self = Thread::Current();
  Task* task = nullptr;
  thread_pool_->creation_barier_.Wait(self);
  while ((task = thread_pool_->GetTask(self)) != nullptr) {
    task->Run(self);
    task->Finalize();
  }
}

void* ThreadPoolWorker::Callback(void* arg) {
  ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
  Runtime* runtime = Runtime::Current();
  CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, nullptr, false));
  // Do work until its time to shut down.
  worker->Run();
  runtime->DetachCurrentThread();
  return nullptr;
}

void ThreadPool::AddTask(Thread* self, Task* task) {
  MutexLock mu(self, task_queue_lock_);
  tasks_.push_back(task);
  // If we have any waiters, signal one.
  if (started_ && waiting_count_ != 0) {
    task_queue_condition_.Signal(self);
  }
}

ThreadPool::ThreadPool(const char* name, size_t num_threads)
  : name_(name),
    task_queue_lock_("task queue lock"),
    task_queue_condition_("task queue condition", task_queue_lock_),
    completion_condition_("task completion condition", task_queue_lock_),
    started_(false),
    shutting_down_(false),
    waiting_count_(0),
    start_time_(0),
    total_wait_time_(0),
    // Add one since the caller of constructor waits on the barrier too.
    creation_barier_(num_threads + 1),
    max_active_workers_(num_threads) {
  Thread* self = Thread::Current();
  while (GetThreadCount() < num_threads) {
    const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
                                                 GetThreadCount());
    threads_.push_back(new ThreadPoolWorker(this, worker_name, ThreadPoolWorker::kDefaultStackSize));
  }
  // Wait for all of the threads to attach.
  creation_barier_.Wait(self);
}

void ThreadPool::SetMaxActiveWorkers(size_t threads) {
  MutexLock mu(Thread::Current(), task_queue_lock_);
  CHECK_LE(threads, GetThreadCount());
  max_active_workers_ = threads;
}

ThreadPool::~ThreadPool() {
  {
    Thread* self = Thread::Current();
    MutexLock mu(self, task_queue_lock_);
    // Tell any remaining workers to shut down.
    shutting_down_ = true;
    // Broadcast to everyone waiting.
    task_queue_condition_.Broadcast(self);
    completion_condition_.Broadcast(self);
  }
  // Wait for the threads to finish.
  STLDeleteElements(&threads_);
}

void ThreadPool::StartWorkers(Thread* self) {
  MutexLock mu(self, task_queue_lock_);
  started_ = true;
  task_queue_condition_.Broadcast(self);
  start_time_ = NanoTime();
  total_wait_time_ = 0;
}

void ThreadPool::StopWorkers(Thread* self) {
  MutexLock mu(self, task_queue_lock_);
  started_ = false;
}

Task* ThreadPool::GetTask(Thread* self) {
  MutexLock mu(self, task_queue_lock_);
  while (!IsShuttingDown()) {
    const size_t thread_count = GetThreadCount();
    // Ensure that we don't use more threads than the maximum active workers.
    const size_t active_threads = thread_count - waiting_count_;
    // <= since self is considered an active worker.
    if (active_threads <= max_active_workers_) {
      Task* task = TryGetTaskLocked();
      if (task != nullptr) {
        return task;
      }
    }

    ++waiting_count_;
    if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
      // We may be done, lets broadcast to the completion condition.
      completion_condition_.Broadcast(self);
    }
    const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
    task_queue_condition_.Wait(self);
    if (kMeasureWaitTime) {
      const uint64_t wait_end = NanoTime();
      total_wait_time_ += wait_end - std::max(wait_start, start_time_);
    }
    --waiting_count_;
  }

  // We are shutting down, return null to tell the worker thread to stop looping.
  return nullptr;
}

Task* ThreadPool::TryGetTask(Thread* self) {
  MutexLock mu(self, task_queue_lock_);
  return TryGetTaskLocked();
}

Task* ThreadPool::TryGetTaskLocked() {
  if (started_ && !tasks_.empty()) {
    Task* task = tasks_.front();
    tasks_.pop_front();
    return task;
  }
  return nullptr;
}

void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
  if (do_work) {
    Task* task = nullptr;
    while ((task = TryGetTask(self)) != nullptr) {
      task->Run(self);
      task->Finalize();
    }
  }
  // Wait until each thread is waiting and the task list is empty.
  MutexLock mu(self, task_queue_lock_);
  while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) {
    if (!may_hold_locks) {
      completion_condition_.Wait(self);
    } else {
      completion_condition_.WaitHoldingLocks(self);
    }
  }
}

size_t ThreadPool::GetTaskCount(Thread* self) {
  MutexLock mu(self, task_queue_lock_);
  return tasks_.size();
}

WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name,
                                       size_t stack_size)
    : ThreadPoolWorker(thread_pool, name, stack_size), task_(nullptr) {}

void WorkStealingWorker::Run() {
  Thread* self = Thread::Current();
  Task* task = nullptr;
  WorkStealingThreadPool* thread_pool = down_cast<WorkStealingThreadPool*>(thread_pool_);
  while ((task = thread_pool_->GetTask(self)) != nullptr) {
    WorkStealingTask* stealing_task = down_cast<WorkStealingTask*>(task);

    {
      CHECK(task_ == nullptr);
      MutexLock mu(self, thread_pool->work_steal_lock_);
      // Register that we are running the task
      ++stealing_task->ref_count_;
      task_ = stealing_task;
    }
    stealing_task->Run(self);
    // Mark ourselves as not running a task so that nobody tries to steal from us.
    // There is a race condition that someone starts stealing from us at this point. This is okay
    // due to the reference counting.
    task_ = nullptr;

    bool finalize;

    // Steal work from tasks until there is none left to steal. Note: There is a race, but
    // all that happens when the race occurs is that we steal some work instead of processing a
    // task from the queue.
    while (thread_pool->GetTaskCount(self) == 0) {
      WorkStealingTask* steal_from_task  = nullptr;

      {
        MutexLock mu(self, thread_pool->work_steal_lock_);
        // Try finding a task to steal from.
        steal_from_task = thread_pool->FindTaskToStealFrom();
        if (steal_from_task != nullptr) {
          CHECK_NE(stealing_task, steal_from_task)
              << "Attempting to steal from completed self task";
          steal_from_task->ref_count_++;
        } else {
          break;
        }
      }

      if (steal_from_task != nullptr) {
        // Task which completed earlier is going to steal some work.
        stealing_task->StealFrom(self, steal_from_task);

        {
          // We are done stealing from the task, lets decrement its reference count.
          MutexLock mu(self, thread_pool->work_steal_lock_);
          finalize = !--steal_from_task->ref_count_;
        }

        if (finalize) {
          steal_from_task->Finalize();
        }
      }
    }

    {
      MutexLock mu(self, thread_pool->work_steal_lock_);
      // If nobody is still referencing task_ we can finalize it.
      finalize = !--stealing_task->ref_count_;
    }

    if (finalize) {
      stealing_task->Finalize();
    }
  }
}

WorkStealingWorker::~WorkStealingWorker() {}

WorkStealingThreadPool::WorkStealingThreadPool(const char* name, size_t num_threads)
    : ThreadPool(name, 0),
      work_steal_lock_("work stealing lock"),
      steal_index_(0) {
  while (GetThreadCount() < num_threads) {
    const std::string worker_name = StringPrintf("Work stealing worker %zu", GetThreadCount());
    threads_.push_back(new WorkStealingWorker(this, worker_name,
                                              ThreadPoolWorker::kDefaultStackSize));
  }
}

WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom() {
  const size_t thread_count = GetThreadCount();
  for (size_t i = 0; i < thread_count; ++i) {
    // TODO: Use CAS instead of lock.
    ++steal_index_;
    if (steal_index_ >= thread_count) {
      steal_index_-= thread_count;
    }

    WorkStealingWorker* worker = down_cast<WorkStealingWorker*>(threads_[steal_index_]);
    WorkStealingTask* task = worker->task_;
    if (task) {
      // Not null, we can probably steal from this worker.
      return task;
    }
  }
  // Couldn't find something to steal.
  return nullptr;
}

WorkStealingThreadPool::~WorkStealingThreadPool() {}

}  // namespace art