summaryrefslogtreecommitdiffstats
path: root/libc/bionic/pthread.c
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:28:35 -0800
committerThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:28:35 -0800
commit1dc9e472e19acfe6dc7f41e429236e7eef7ceda1 (patch)
tree3be0c520fae17689bbf5584e1136fb820caef26f /libc/bionic/pthread.c
parent1767f908af327fa388b1c66883760ad851267013 (diff)
downloadbionic-1dc9e472e19acfe6dc7f41e429236e7eef7ceda1.zip
bionic-1dc9e472e19acfe6dc7f41e429236e7eef7ceda1.tar.gz
bionic-1dc9e472e19acfe6dc7f41e429236e7eef7ceda1.tar.bz2
auto import from //depot/cupcake/@135843
Diffstat (limited to 'libc/bionic/pthread.c')
-rw-r--r--libc/bionic/pthread.c1587
1 files changed, 1587 insertions, 0 deletions
diff --git a/libc/bionic/pthread.c b/libc/bionic/pthread.c
new file mode 100644
index 0000000..ec3c459
--- /dev/null
+++ b/libc/bionic/pthread.c
@@ -0,0 +1,1587 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+#include <sys/types.h>
+#include <unistd.h>
+#include <signal.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <errno.h>
+#include <sys/atomics.h>
+#include <bionic_tls.h>
+#include <sys/mman.h>
+#include <pthread.h>
+#include <time.h>
+#include "pthread_internal.h"
+#include "thread_private.h"
+#include <limits.h>
+#include <memory.h>
+#include <assert.h>
+#include <malloc.h>
+
+extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
+extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
+extern void _exit_thread(int retCode);
+extern int __set_errno(int);
+
+void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
+
+#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
+#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
+
+#define DEFAULT_STACKSIZE (1024 * 1024)
+#define STACKBASE 0x10000000
+
+static uint8_t * gStackBase = (uint8_t *)STACKBASE;
+
+static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
+
+
+static const pthread_attr_t gDefaultPthreadAttr = {
+ .flags = 0,
+ .stack_base = NULL,
+ .stack_size = DEFAULT_STACKSIZE,
+ .guard_size = PAGE_SIZE,
+ .sched_policy = SCHED_NORMAL,
+ .sched_priority = 0
+};
+
+#define INIT_THREADS 1
+
+static pthread_internal_t* gThreadList = NULL;
+static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
+static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
+
+
+/* we simply malloc/free the internal pthread_internal_t structures. we may
+ * want to use a different allocation scheme in the future, but this one should
+ * be largely enough
+ */
+static pthread_internal_t*
+_pthread_internal_alloc(void)
+{
+ pthread_internal_t* thread;
+
+ thread = calloc( sizeof(*thread), 1 );
+ if (thread)
+ thread->intern = 1;
+
+ return thread;
+}
+
+static void
+_pthread_internal_free( pthread_internal_t* thread )
+{
+ if (thread && thread->intern) {
+ thread->intern = 0; /* just in case */
+ free (thread);
+ }
+}
+
+
+static void
+_pthread_internal_remove_locked( pthread_internal_t* thread )
+{
+ thread->next->pref = thread->pref;
+ thread->pref[0] = thread->next;
+}
+
+static void
+_pthread_internal_remove( pthread_internal_t* thread )
+{
+ pthread_mutex_lock(&gThreadListLock);
+ _pthread_internal_remove_locked(thread);
+ pthread_mutex_unlock(&gThreadListLock);
+}
+
+static void
+_pthread_internal_add( pthread_internal_t* thread )
+{
+ pthread_mutex_lock(&gThreadListLock);
+ thread->pref = &gThreadList;
+ thread->next = thread->pref[0];
+ if (thread->next)
+ thread->next->pref = &thread->next;
+ thread->pref[0] = thread;
+ pthread_mutex_unlock(&gThreadListLock);
+}
+
+pthread_internal_t*
+__get_thread(void)
+{
+ void** tls = (void**)__get_tls();
+
+ return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
+}
+
+
+void*
+__get_stack_base(int *p_stack_size)
+{
+ pthread_internal_t* thread = __get_thread();
+
+ *p_stack_size = thread->attr.stack_size;
+ return thread->attr.stack_base;
+}
+
+
+void __init_tls(void** tls, void* thread)
+{
+ int nn;
+
+ ((pthread_internal_t*)thread)->tls = tls;
+
+ // slot 0 must point to the tls area, this is required by the implementation
+ // of the x86 Linux kernel thread-local-storage
+ tls[TLS_SLOT_SELF] = (void*)tls;
+ tls[TLS_SLOT_THREAD_ID] = thread;
+ for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
+ tls[nn] = 0;
+
+ __set_tls( (void*)tls );
+}
+
+
+/*
+ * This trampoline is called from the assembly clone() function
+ */
+void __thread_entry(int (*func)(void*), void *arg, void **tls)
+{
+ int retValue;
+ pthread_internal_t * thrInfo;
+
+ // Wait for our creating thread to release us. This lets it have time to
+ // notify gdb about this thread before it starts doing anything.
+ pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
+ pthread_mutex_lock(start_mutex);
+ pthread_mutex_destroy(start_mutex);
+
+ thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
+
+ __init_tls( tls, thrInfo );
+
+ pthread_exit( (void*)func(arg) );
+}
+
+void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
+{
+ if (attr == NULL) {
+ thread->attr = gDefaultPthreadAttr;
+ } else {
+ thread->attr = *attr;
+ }
+ thread->attr.stack_base = stack_base;
+ thread->kernel_id = kernel_id;
+
+ // set the scheduling policy/priority of the thread
+ if (thread->attr.sched_policy != SCHED_NORMAL) {
+ struct sched_param param;
+ param.sched_priority = thread->attr.sched_priority;
+ sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
+ }
+
+ pthread_cond_init(&thread->join_cond, NULL);
+ thread->join_count = 0;
+
+ thread->cleanup_stack = NULL;
+
+ _pthread_internal_add(thread);
+}
+
+
+/* XXX stacks not reclaimed if thread spawn fails */
+/* XXX stacks address spaces should be reused if available again */
+
+static void *mkstack(size_t size, size_t guard_size)
+{
+ void * stack;
+
+ pthread_mutex_lock(&mmap_lock);
+
+ stack = mmap((void *)gStackBase, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
+ -1, 0);
+
+ if(stack == MAP_FAILED) {
+ stack = NULL;
+ goto done;
+ }
+
+ if(mprotect(stack, guard_size, PROT_NONE)){
+ munmap(stack, size);
+ stack = NULL;
+ goto done;
+ }
+
+done:
+ pthread_mutex_unlock(&mmap_lock);
+ return stack;
+}
+
+/*
+ * Create a new thread. The thread's stack is layed out like so:
+ *
+ * +---------------------------+
+ * | pthread_internal_t |
+ * +---------------------------+
+ * | |
+ * | TLS area |
+ * | |
+ * +---------------------------+
+ * | |
+ * . .
+ * . stack area .
+ * . .
+ * | |
+ * +---------------------------+
+ * | guard page |
+ * +---------------------------+
+ *
+ * note that TLS[0] must be a pointer to itself, this is required
+ * by the thread-local storage implementation of the x86 Linux
+ * kernel, where the TLS pointer is read by reading fs:[0]
+ */
+int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
+ void *(*start_routine)(void *), void * arg)
+{
+ char* stack;
+ void** tls;
+ int tid;
+ pthread_mutex_t * start_mutex;
+ pthread_internal_t * thread;
+ int madestack = 0;
+ int old_errno = errno;
+
+ /* this will inform the rest of the C library that at least one thread
+ * was created. this will enforce certain functions to acquire/release
+ * locks (e.g. atexit()) to protect shared global structures.
+ *
+ * this works because pthread_create() is not called by the C library
+ * initialization routine that sets up the main thread's data structures.
+ */
+ __isthreaded = 1;
+
+ thread = _pthread_internal_alloc();
+ if (thread == NULL)
+ return ENOMEM;
+
+ if (attr == NULL) {
+ attr = &gDefaultPthreadAttr;
+ }
+
+ // make sure the stack is PAGE_SIZE aligned
+ size_t stackSize = (attr->stack_size +
+ (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
+
+ if (!attr->stack_base) {
+ stack = mkstack(stackSize, attr->guard_size);
+ if(stack == NULL) {
+ _pthread_internal_free(thread);
+ return ENOMEM;
+ }
+ madestack = 1;
+ } else {
+ stack = attr->stack_base;
+ }
+
+ // Make room for TLS
+ tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
+
+ // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
+ // it from doing anything until after we notify the debugger about it
+ start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
+ pthread_mutex_init(start_mutex, NULL);
+ pthread_mutex_lock(start_mutex);
+
+ tls[TLS_SLOT_THREAD_ID] = thread;
+
+ tid = __pthread_clone((int(*)(void*))start_routine, tls,
+ CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
+ | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
+ arg);
+
+ if(tid < 0) {
+ int result;
+ if (madestack)
+ munmap(stack, stackSize);
+ _pthread_internal_free(thread);
+ result = errno;
+ errno = old_errno;
+ return result;
+ }
+
+ _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
+
+ if (!madestack)
+ thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
+
+ // Notify any debuggers about the new thread
+ pthread_mutex_lock(&gDebuggerNotificationLock);
+ _thread_created_hook(tid);
+ pthread_mutex_unlock(&gDebuggerNotificationLock);
+
+ // Let the thread do it's thing
+ pthread_mutex_unlock(start_mutex);
+
+ *thread_out = (pthread_t)thread;
+ return 0;
+}
+
+
+int pthread_attr_init(pthread_attr_t * attr)
+{
+ *attr = gDefaultPthreadAttr;
+ return 0;
+}
+
+int pthread_attr_destroy(pthread_attr_t * attr)
+{
+ memset(attr, 0x42, sizeof(pthread_attr_t));
+ return 0;
+}
+
+int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
+{
+ if (state == PTHREAD_CREATE_DETACHED) {
+ attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
+ } else if (state == PTHREAD_CREATE_JOINABLE) {
+ attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
+ } else {
+ return EINVAL;
+ }
+ return 0;
+}
+
+int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
+{
+ *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
+ ? PTHREAD_CREATE_DETACHED
+ : PTHREAD_CREATE_JOINABLE;
+ return 0;
+}
+
+int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
+{
+ attr->sched_policy = policy;
+ return 0;
+}
+
+int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
+{
+ *policy = attr->sched_policy;
+ return 0;
+}
+
+int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
+{
+ attr->sched_priority = param->sched_priority;
+ return 0;
+}
+
+int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
+{
+ param->sched_priority = attr->sched_priority;
+ return 0;
+}
+
+int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
+{
+ if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
+ return EINVAL;
+ }
+ attr->stack_size = stack_size;
+ return 0;
+}
+
+int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
+{
+ *stack_size = attr->stack_size;
+ return 0;
+}
+
+int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
+{
+#if 1
+ // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
+ return ENOSYS;
+#else
+ if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
+ return EINVAL;
+ }
+ attr->stack_base = stack_addr;
+ return 0;
+#endif
+}
+
+int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
+{
+ *stack_addr = attr->stack_base + attr->stack_size;
+ return 0;
+}
+
+int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
+{
+ if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
+ return EINVAL;
+ }
+ if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
+ return EINVAL;
+ }
+ attr->stack_base = stack_base;
+ attr->stack_size = stack_size;
+ return 0;
+}
+
+int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
+{
+ *stack_base = attr->stack_base;
+ *stack_size = attr->stack_size;
+ return 0;
+}
+
+int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
+{
+ if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
+ return EINVAL;
+ }
+
+ attr->guard_size = guard_size;
+ return 0;
+}
+
+int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
+{
+ *guard_size = attr->guard_size;
+ return 0;
+}
+
+int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
+{
+ pthread_internal_t * thread = (pthread_internal_t *)thid;
+ *attr = thread->attr;
+ return 0;
+}
+
+int pthread_attr_setscope(pthread_attr_t *attr, int scope)
+{
+ if (scope == PTHREAD_SCOPE_SYSTEM)
+ return 0;
+ if (scope == PTHREAD_SCOPE_PROCESS)
+ return ENOTSUP;
+
+ return EINVAL;
+}
+
+int pthread_attr_getscope(pthread_attr_t const *attr)
+{
+ return PTHREAD_SCOPE_SYSTEM;
+}
+
+
+/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
+ * and thread cancelation
+ */
+
+void __pthread_cleanup_push( __pthread_cleanup_t* c,
+ __pthread_cleanup_func_t routine,
+ void* arg )
+{
+ pthread_internal_t* thread = __get_thread();
+
+ c->__cleanup_routine = routine;
+ c->__cleanup_arg = arg;
+ c->__cleanup_prev = thread->cleanup_stack;
+ thread->cleanup_stack = c;
+}
+
+void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
+{
+ pthread_internal_t* thread = __get_thread();
+
+ thread->cleanup_stack = c->__cleanup_prev;
+ if (execute)
+ c->__cleanup_routine(c->__cleanup_arg);
+}
+
+/* used by pthread_exit() to clean all TLS keys of the current thread */
+static void pthread_key_clean_all(void);
+
+void pthread_exit(void * retval)
+{
+ pthread_internal_t* thread = __get_thread();
+ void* stack_base = thread->attr.stack_base;
+ int stack_size = thread->attr.stack_size;
+ int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
+
+ // call the cleanup handlers first
+ while (thread->cleanup_stack) {
+ __pthread_cleanup_t* c = thread->cleanup_stack;
+ thread->cleanup_stack = c->__cleanup_prev;
+ c->__cleanup_routine(c->__cleanup_arg);
+ }
+
+ // call the TLS destructors, it is important to do that before removing this
+ // thread from the global list. this will ensure that if someone else deletes
+ // a TLS key, the corresponding value will be set to NULL in this thread's TLS
+ // space (see pthread_key_delete)
+ pthread_key_clean_all();
+
+ // if the thread is detached, destroy the pthread_internal_t
+ // otherwise, keep it in memory and signal any joiners
+ if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
+ _pthread_internal_remove(thread);
+ _pthread_internal_free(thread);
+ } else {
+ /* the join_count field is used to store the number of threads waiting for
+ * the termination of this thread with pthread_join(),
+ *
+ * if it is positive we need to signal the waiters, and we do not touch
+ * the count (it will be decremented by the waiters, the last one will
+ * also remove/free the thread structure
+ *
+ * if it is zero, we set the count value to -1 to indicate that the
+ * thread is in 'zombie' state: it has stopped executing, and its stack
+ * is gone (as well as its TLS area). when another thread calls pthread_join()
+ * on it, it will immediately free the thread and return.
+ */
+ pthread_mutex_lock(&gThreadListLock);
+ thread->return_value = retval;
+ if (thread->join_count > 0) {
+ pthread_cond_broadcast(&thread->join_cond);
+ } else {
+ thread->join_count = -1; /* zombie thread */
+ }
+ pthread_mutex_unlock(&gThreadListLock);
+ }
+
+ // destroy the thread stack
+ if (user_stack)
+ _exit_thread((int)retval);
+ else
+ _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
+}
+
+int pthread_join(pthread_t thid, void ** ret_val)
+{
+ pthread_internal_t* thread = (pthread_internal_t*)thid;
+ int count;
+
+ // check that the thread still exists and is not detached
+ pthread_mutex_lock(&gThreadListLock);
+
+ for (thread = gThreadList; thread != NULL; thread = thread->next)
+ if (thread == (pthread_internal_t*)thid)
+ break;
+
+ if (!thread) {
+ pthread_mutex_unlock(&gThreadListLock);
+ return ESRCH;
+ }
+
+ if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
+ pthread_mutex_unlock(&gThreadListLock);
+ return EINVAL;
+ }
+
+ /* wait for thread death when needed
+ *
+ * if the 'join_count' is negative, this is a 'zombie' thread that
+ * is already dead and without stack/TLS
+ *
+ * otherwise, we need to increment 'join-count' and wait to be signaled
+ */
+ count = thread->join_count;
+ if (count >= 0) {
+ thread->join_count += 1;
+ pthread_cond_wait( &thread->join_cond, &gThreadListLock );
+ count = --thread->join_count;
+ }
+ if (ret_val)
+ *ret_val = thread->return_value;
+
+ /* remove thread descriptor when we're the last joiner or when the
+ * thread was already a zombie.
+ */
+ if (count <= 0) {
+ _pthread_internal_remove_locked(thread);
+ _pthread_internal_free(thread);
+ }
+ pthread_mutex_unlock(&gThreadListLock);
+ return 0;
+}
+
+int pthread_detach( pthread_t thid )
+{
+ pthread_internal_t* thread;
+ int result = 0;
+ int flags;
+
+ pthread_mutex_lock(&gThreadListLock);
+ for (thread = gThreadList; thread != NULL; thread = thread->next)
+ if (thread == (pthread_internal_t*)thid)
+ goto FoundIt;
+
+ result = ESRCH;
+ goto Exit;
+
+FoundIt:
+ do {
+ flags = thread->attr.flags;
+
+ if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
+ /* thread is not joinable ! */
+ result = EINVAL;
+ goto Exit;
+ }
+ }
+ while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
+ (volatile int*)&thread->attr.flags ) != 0 );
+Exit:
+ pthread_mutex_unlock(&gThreadListLock);
+ return result;
+}
+
+pthread_t pthread_self(void)
+{
+ return (pthread_t)__get_thread();
+}
+
+int pthread_equal(pthread_t one, pthread_t two)
+{
+ return (one == two ? 1 : 0);
+}
+
+int pthread_getschedparam(pthread_t thid, int * policy,
+ struct sched_param * param)
+{
+ int old_errno = errno;
+
+ pthread_internal_t * thread = (pthread_internal_t *)thid;
+ int err = sched_getparam(thread->kernel_id, param);
+ if (!err) {
+ *policy = sched_getscheduler(thread->kernel_id);
+ } else {
+ err = errno;
+ errno = old_errno;
+ }
+ return err;
+}
+
+int pthread_setschedparam(pthread_t thid, int policy,
+ struct sched_param const * param)
+{
+ pthread_internal_t * thread = (pthread_internal_t *)thid;
+ int old_errno = errno;
+ int ret;
+
+ ret = sched_setscheduler(thread->kernel_id, policy, param);
+ if (ret < 0) {
+ ret = errno;
+ errno = old_errno;
+ }
+ return ret;
+}
+
+
+int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
+int __futex_wake(volatile void *ftx, int count);
+
+// mutex lock states
+//
+// 0: unlocked
+// 1: locked, no waiters
+// 2: locked, maybe waiters
+
+/* a mutex is implemented as a 32-bit integer holding the following fields
+ *
+ * bits: name description
+ * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
+ * 15-14 type mutex type
+ * 13-2 counter counter of recursive mutexes
+ * 1-0 state lock state (0, 1 or 2)
+ */
+
+
+#define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff)
+#define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
+
+#define MUTEX_TYPE_MASK 0xc000
+#define MUTEX_TYPE_NORMAL 0x0000
+#define MUTEX_TYPE_RECURSIVE 0x4000
+#define MUTEX_TYPE_ERRORCHECK 0x8000
+
+#define MUTEX_COUNTER_SHIFT 2
+#define MUTEX_COUNTER_MASK 0x3ffc
+
+
+
+
+int pthread_mutexattr_init(pthread_mutexattr_t *attr)
+{
+ if (attr) {
+ *attr = PTHREAD_MUTEX_DEFAULT;
+ return 0;
+ } else {
+ return EINVAL;
+ }
+}
+
+int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
+{
+ if (attr) {
+ *attr = -1;
+ return 0;
+ } else {
+ return EINVAL;
+ }
+}
+
+int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
+{
+ if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
+ *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
+ *type = *attr;
+ return 0;
+ }
+ return EINVAL;
+}
+
+int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
+{
+ if (attr && type >= PTHREAD_MUTEX_NORMAL &&
+ type <= PTHREAD_MUTEX_ERRORCHECK ) {
+ *attr = type;
+ return 0;
+ }
+ return EINVAL;
+}
+
+/* process-shared mutexes are not supported at the moment */
+
+int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
+{
+ if (!attr)
+ return EINVAL;
+
+ return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP;
+}
+
+int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
+{
+ if (!attr)
+ return EINVAL;
+
+ *pshared = PTHREAD_PROCESS_PRIVATE;
+ return 0;
+}
+
+int pthread_mutex_init(pthread_mutex_t *mutex,
+ const pthread_mutexattr_t *attr)
+{
+ if ( mutex ) {
+ if (attr == NULL) {
+ mutex->value = MUTEX_TYPE_NORMAL;
+ return 0;
+ }
+ switch ( *attr ) {
+ case PTHREAD_MUTEX_NORMAL:
+ mutex->value = MUTEX_TYPE_NORMAL;
+ return 0;
+
+ case PTHREAD_MUTEX_RECURSIVE:
+ mutex->value = MUTEX_TYPE_RECURSIVE;
+ return 0;
+
+ case PTHREAD_MUTEX_ERRORCHECK:
+ mutex->value = MUTEX_TYPE_ERRORCHECK;
+ return 0;
+ }
+ }
+ return EINVAL;
+}
+
+int pthread_mutex_destroy(pthread_mutex_t *mutex)
+{
+ mutex->value = 0xdead10cc;
+ return 0;
+}
+
+
+/*
+ * Lock a non-recursive mutex.
+ *
+ * As noted above, there are three states:
+ * 0 (unlocked, no contention)
+ * 1 (locked, no contention)
+ * 2 (locked, contention)
+ *
+ * Non-recursive mutexes don't use the thread-id or counter fields, and the
+ * "type" value is zero, so the only bits that will be set are the ones in
+ * the lock state field.
+ */
+static __inline__ void
+_normal_lock(pthread_mutex_t* mutex)
+{
+ /*
+ * The common case is an unlocked mutex, so we begin by trying to
+ * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
+ * if it made the swap successfully. If the result is nonzero, this
+ * lock is already held by another thread.
+ */
+ if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
+ /*
+ * We want to go to sleep until the mutex is available, which
+ * requires promoting it to state 2. We need to swap in the new
+ * state value and then wait until somebody wakes us up.
+ *
+ * __atomic_swap() returns the previous value. We swap 2 in and
+ * see if we got zero back; if so, we have acquired the lock. If
+ * not, another thread still holds the lock and we wait again.
+ *
+ * The second argument to the __futex_wait() call is compared
+ * against the current value. If it doesn't match, __futex_wait()
+ * returns immediately (otherwise, it sleeps for a time specified
+ * by the third argument; 0 means sleep forever). This ensures
+ * that the mutex is in state 2 when we go to sleep on it, which
+ * guarantees a wake-up call.
+ */
+ while (__atomic_swap(2, &mutex->value ) != 0)
+ __futex_wait(&mutex->value, 2, 0);
+ }
+}
+
+/*
+ * Release a non-recursive mutex. The caller is responsible for determining
+ * that we are in fact the owner of this lock.
+ */
+static __inline__ void
+_normal_unlock(pthread_mutex_t* mutex)
+{
+ /*
+ * The mutex value will be 1 or (rarely) 2. We use an atomic decrement
+ * to release the lock. __atomic_dec() returns the previous value;
+ * if it wasn't 1 we have to do some additional work.
+ */
+ if (__atomic_dec(&mutex->value) != 1) {
+ /*
+ * Start by releasing the lock. The decrement changed it from
+ * "contended lock" to "uncontended lock", which means we still
+ * hold it, and anybody who tries to sneak in will push it back
+ * to state 2.
+ *
+ * Once we set it to zero the lock is up for grabs. We follow
+ * this with a __futex_wake() to ensure that one of the waiting
+ * threads has a chance to grab it.
+ *
+ * This doesn't cause a race with the swap/wait pair in
+ * _normal_lock(), because the __futex_wait() call there will
+ * return immediately if the mutex value isn't 2.
+ */
+ mutex->value = 0;
+
+ /*
+ * Wake up one waiting thread. We don't know which thread will be
+ * woken or when it'll start executing -- futexes make no guarantees
+ * here. There may not even be a thread waiting.
+ *
+ * The newly-woken thread will replace the 0 we just set above
+ * with 2, which means that when it eventually releases the mutex
+ * it will also call FUTEX_WAKE. This results in one extra wake
+ * call whenever a lock is contended, but lets us avoid forgetting
+ * anyone without requiring us to track the number of sleepers.
+ *
+ * It's possible for another thread to sneak in and grab the lock
+ * between the zero assignment above and the wake call below. If
+ * the new thread is "slow" and holds the lock for a while, we'll
+ * wake up a sleeper, which will swap in a 2 and then go back to
+ * sleep since the lock is still held. If the new thread is "fast",
+ * running to completion before we call wake, the thread we
+ * eventually wake will find an unlocked mutex and will execute.
+ * Either way we have correct behavior and nobody is orphaned on
+ * the wait queue.
+ */
+ __futex_wake(&mutex->value, 1);
+ }
+}
+
+static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
+
+static void
+_recursive_lock(void)
+{
+ _normal_lock( &__recursive_lock);
+}
+
+static void
+_recursive_unlock(void)
+{
+ _normal_unlock( &__recursive_lock );
+}
+
+#define __likely(cond) __builtin_expect(!!(cond), 1)
+#define __unlikely(cond) __builtin_expect(!!(cond), 0)
+
+int pthread_mutex_lock(pthread_mutex_t *mutex)
+{
+ if (__likely(mutex != NULL))
+ {
+ int mtype = (mutex->value & MUTEX_TYPE_MASK);
+
+ if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
+ _normal_lock(mutex);
+ }
+ else
+ {
+ int tid = __get_thread()->kernel_id;
+
+ if ( tid == MUTEX_OWNER(mutex) )
+ {
+ int oldv, counter;
+
+ if (mtype == MUTEX_TYPE_ERRORCHECK) {
+ /* trying to re-lock a mutex we already acquired */
+ return EDEADLK;
+ }
+ /*
+ * We own the mutex, but other threads are able to change
+ * the contents (e.g. promoting it to "contended"), so we
+ * need to hold the global lock.
+ */
+ _recursive_lock();
+ oldv = mutex->value;
+ counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
+ mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
+ _recursive_unlock();
+ }
+ else
+ {
+ /*
+ * If the new lock is available immediately, we grab it in
+ * the "uncontended" state.
+ */
+ int new_lock_type = 1;
+
+ for (;;) {
+ int oldv;
+
+ _recursive_lock();
+ oldv = mutex->value;
+ if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
+ mutex->value = ((tid << 16) | mtype | new_lock_type);
+ } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
+ oldv ^= 3;
+ mutex->value = oldv;
+ }
+ _recursive_unlock();
+
+ if (oldv == mtype)
+ break;
+
+ /*
+ * The lock was held, possibly contended by others. From
+ * now on, if we manage to acquire the lock, we have to
+ * assume that others are still contending for it so that
+ * we'll wake them when we unlock it.
+ */
+ new_lock_type = 2;
+
+ __futex_wait( &mutex->value, oldv, 0 );
+ }
+ }
+ }
+ return 0;
+ }
+ return EINVAL;
+}
+
+
+int pthread_mutex_unlock(pthread_mutex_t *mutex)
+{
+ if (__likely(mutex != NULL))
+ {
+ int mtype = (mutex->value & MUTEX_TYPE_MASK);
+
+ if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
+ _normal_unlock(mutex);
+ }
+ else
+ {
+ int tid = __get_thread()->kernel_id;
+
+ if ( tid == MUTEX_OWNER(mutex) )
+ {
+ int oldv;
+
+ _recursive_lock();
+ oldv = mutex->value;
+ if (oldv & MUTEX_COUNTER_MASK) {
+ mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
+ oldv = 0;
+ } else {
+ mutex->value = mtype;
+ }
+ _recursive_unlock();
+
+ if ((oldv & 3) == 2)
+ __futex_wake( &mutex->value, 1 );
+ }
+ else {
+ /* trying to unlock a lock we do not own */
+ return EPERM;
+ }
+ }
+ return 0;
+ }
+ return EINVAL;
+}
+
+
+int pthread_mutex_trylock(pthread_mutex_t *mutex)
+{
+ if (__likely(mutex != NULL))
+ {
+ int mtype = (mutex->value & MUTEX_TYPE_MASK);
+
+ if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
+ {
+ if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
+ return 0;
+
+ return EBUSY;
+ }
+ else
+ {
+ int tid = __get_thread()->kernel_id;
+ int oldv;
+
+ if ( tid == MUTEX_OWNER(mutex) )
+ {
+ int oldv, counter;
+
+ if (mtype == MUTEX_TYPE_ERRORCHECK) {
+ /* already locked by ourselves */
+ return EDEADLK;
+ }
+
+ _recursive_lock();
+ oldv = mutex->value;
+ counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
+ mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
+ _recursive_unlock();
+ return 0;
+ }
+
+ /* try to lock it */
+ _recursive_lock();
+ oldv = mutex->value;
+ if (oldv == mtype) /* uncontended released lock => state 1 */
+ mutex->value = ((tid << 16) | mtype | 1);
+ _recursive_unlock();
+
+ if (oldv != mtype)
+ return EBUSY;
+
+ return 0;
+ }
+ }
+ return EINVAL;
+}
+
+
+/* XXX *technically* there is a race condition that could allow
+ * XXX a signal to be missed. If thread A is preempted in _wait()
+ * XXX after unlocking the mutex and before waiting, and if other
+ * XXX threads call signal or broadcast UINT_MAX times (exactly),
+ * XXX before thread A is scheduled again and calls futex_wait(),
+ * XXX then the signal will be lost.
+ */
+
+int pthread_cond_init(pthread_cond_t *cond,
+ const pthread_condattr_t *attr)
+{
+ cond->value = 0;
+ return 0;
+}
+
+int pthread_cond_destroy(pthread_cond_t *cond)
+{
+ cond->value = 0xdeadc04d;
+ return 0;
+}
+
+int pthread_cond_broadcast(pthread_cond_t *cond)
+{
+ __atomic_dec(&cond->value);
+ __futex_wake(&cond->value, INT_MAX);
+ return 0;
+}
+
+int pthread_cond_signal(pthread_cond_t *cond)
+{
+ __atomic_dec(&cond->value);
+ __futex_wake(&cond->value, 1);
+ return 0;
+}
+
+int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
+{
+ return pthread_cond_timedwait(cond, mutex, NULL);
+}
+
+int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
+ pthread_mutex_t * mutex,
+ const struct timespec *reltime)
+{
+ int status;
+ int oldvalue = cond->value;
+
+ pthread_mutex_unlock(mutex);
+ status = __futex_wait(&cond->value, oldvalue, reltime);
+ pthread_mutex_lock(mutex);
+
+ if (status == (-ETIMEDOUT)) return ETIMEDOUT;
+ return 0;
+}
+
+int __pthread_cond_timedwait(pthread_cond_t *cond,
+ pthread_mutex_t * mutex,
+ const struct timespec *abstime,
+ clockid_t clock)
+{
+ struct timespec ts;
+ struct timespec * tsp;
+
+ if (abstime != NULL) {
+ clock_gettime(clock, &ts);
+ ts.tv_sec = abstime->tv_sec - ts.tv_sec;
+ ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec;
+ if (ts.tv_nsec < 0) {
+ ts.tv_sec--;
+ ts.tv_nsec += 1000000000;
+ }
+ if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) {
+ return ETIMEDOUT;
+ }
+ tsp = &ts;
+ } else {
+ tsp = NULL;
+ }
+
+ return __pthread_cond_timedwait_relative(cond, mutex, tsp);
+}
+
+int pthread_cond_timedwait(pthread_cond_t *cond,
+ pthread_mutex_t * mutex,
+ const struct timespec *abstime)
+{
+ return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
+}
+
+
+int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
+ pthread_mutex_t * mutex,
+ const struct timespec *abstime)
+{
+ return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
+}
+
+int pthread_cond_timeout_np(pthread_cond_t *cond,
+ pthread_mutex_t * mutex,
+ unsigned msecs)
+{
+ int oldvalue;
+ struct timespec ts;
+ int status;
+
+ ts.tv_sec = msecs / 1000;
+ ts.tv_nsec = (msecs % 1000) * 1000000;
+
+ oldvalue = cond->value;
+
+ pthread_mutex_unlock(mutex);
+ status = __futex_wait(&cond->value, oldvalue, &ts);
+ pthread_mutex_lock(mutex);
+
+ if(status == (-ETIMEDOUT)) return ETIMEDOUT;
+
+ return 0;
+}
+
+
+
+/* A technical note regarding our thread-local-storage (TLS) implementation:
+ *
+ * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
+ * though the first TLSMAP_START keys are reserved for Bionic to hold
+ * special thread-specific variables like errno or a pointer to
+ * the current thread's descriptor.
+ *
+ * while stored in the TLS area, these entries cannot be accessed through
+ * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
+ *
+ * also, some entries in the key table are pre-allocated (see tlsmap_lock)
+ * to greatly simplify and speedup some OpenGL-related operations. though the
+ * initialy value will be NULL on all threads.
+ *
+ * you can use pthread_getspecific()/setspecific() on these, and in theory
+ * you could also call pthread_key_delete() as well, though this would
+ * probably break some apps.
+ *
+ * The 'tlsmap_t' type defined below implements a shared global map of
+ * currently created/allocated TLS keys and the destructors associated
+ * with them. You should use tlsmap_lock/unlock to access it to avoid
+ * any race condition.
+ *
+ * the global TLS map simply contains a bitmap of allocated keys, and
+ * an array of destructors.
+ *
+ * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
+ * pointers. the TLS area of the main thread is stack-allocated in
+ * __libc_init_common, while the TLS area of other threads is placed at
+ * the top of their stack in pthread_create.
+ *
+ * when pthread_key_create() is called, it finds the first free key in the
+ * bitmap, then set it to 1, saving the destructor altogether
+ *
+ * when pthread_key_delete() is called. it will erase the key's bitmap bit
+ * and its destructor, and will also clear the key data in the TLS area of
+ * all created threads. As mandated by Posix, it is the responsability of
+ * the caller of pthread_key_delete() to properly reclaim the objects that
+ * were pointed to by these data fields (either before or after the call).
+ *
+ */
+
+/* TLS Map implementation
+ */
+
+#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
+#define TLSMAP_SIZE BIONIC_TLS_SLOTS
+#define TLSMAP_BITS 32
+#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
+#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
+#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
+
+/* this macro is used to quickly check that a key belongs to a reasonable range */
+#define TLSMAP_VALIDATE_KEY(key) \
+ ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
+
+/* the type of tls key destructor functions */
+typedef void (*tls_dtor_t)(void*);
+
+typedef struct {
+ int init; /* see comment in tlsmap_lock() */
+ uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
+ tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
+} tlsmap_t;
+
+static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
+static tlsmap_t _tlsmap;
+
+/* lock the global TLS map lock and return a handle to it */
+static __inline__ tlsmap_t* tlsmap_lock(void)
+{
+ tlsmap_t* m = &_tlsmap;
+
+ pthread_mutex_lock(&_tlsmap_lock);
+ /* we need to initialize the first entry of the 'map' array
+ * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
+ * when declaring _tlsmap is a bit awkward and is going to
+ * produce warnings, so do it the first time we use the map
+ * instead
+ */
+ if (__unlikely(!m->init)) {
+ TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
+ m->init = 1;
+ }
+ return m;
+}
+
+/* unlock the global TLS map */
+static __inline__ void tlsmap_unlock(tlsmap_t* m)
+{
+ pthread_mutex_unlock(&_tlsmap_lock);
+ (void)m; /* a good compiler is a happy compiler */
+}
+
+/* test to see wether a key is allocated */
+static __inline__ int tlsmap_test(tlsmap_t* m, int key)
+{
+ return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
+}
+
+/* set the destructor and bit flag on a newly allocated key */
+static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
+{
+ TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
+ m->dtors[key] = dtor;
+}
+
+/* clear the destructor and bit flag on an existing key */
+static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
+{
+ TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
+ m->dtors[key] = NULL;
+}
+
+/* allocate a new TLS key, return -1 if no room left */
+static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
+{
+ int key;
+
+ for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
+ if ( !tlsmap_test(m, key) ) {
+ tlsmap_set(m, key, dtor);
+ return key;
+ }
+ }
+ return -1;
+}
+
+
+int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
+{
+ uint32_t err = ENOMEM;
+ tlsmap_t* map = tlsmap_lock();
+ int k = tlsmap_alloc(map, destructor_function);
+
+ if (k >= 0) {
+ *key = k;
+ err = 0;
+ }
+ tlsmap_unlock(map);
+ return err;
+}
+
+
+/* This deletes a pthread_key_t. note that the standard mandates that this does
+ * not call the destructor of non-NULL key values. Instead, it is the
+ * responsability of the caller to properly dispose of the corresponding data
+ * and resources, using any mean it finds suitable.
+ *
+ * On the other hand, this function will clear the corresponding key data
+ * values in all known threads. this prevents later (invalid) calls to
+ * pthread_getspecific() to receive invalid/stale values.
+ */
+int pthread_key_delete(pthread_key_t key)
+{
+ uint32_t err;
+ pthread_internal_t* thr;
+ tlsmap_t* map;
+
+ if (!TLSMAP_VALIDATE_KEY(key)) {
+ return EINVAL;
+ }
+
+ map = tlsmap_lock();
+
+ if (!tlsmap_test(map, key)) {
+ err = EINVAL;
+ goto err1;
+ }
+
+ /* clear value in all threads */
+ pthread_mutex_lock(&gThreadListLock);
+ for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
+ /* avoid zombie threads with a negative 'join_count'. these are really
+ * already dead and don't have a TLS area anymore.
+ *
+ * similarly, it is possible to have thr->tls == NULL for threads that
+ * were just recently created through pthread_create() but whose
+ * startup trampoline (__thread_entry) hasn't been run yet by the
+ * scheduler. so check for this too.
+ */
+ if (thr->join_count < 0 || !thr->tls)
+ continue;
+
+ thr->tls[key] = NULL;
+ }
+ tlsmap_clear(map, key);
+
+ pthread_mutex_unlock(&gThreadListLock);
+ err = 0;
+
+err1:
+ tlsmap_unlock(map);
+ return err;
+}
+
+
+int pthread_setspecific(pthread_key_t key, const void *ptr)
+{
+ int err = EINVAL;
+ tlsmap_t* map;
+
+ if (TLSMAP_VALIDATE_KEY(key)) {
+ /* check that we're trying to set data for an allocated key */
+ map = tlsmap_lock();
+ if (tlsmap_test(map, key)) {
+ ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
+ err = 0;
+ }
+ tlsmap_unlock(map);
+ }
+ return err;
+}
+
+void * pthread_getspecific(pthread_key_t key)
+{
+ if (!TLSMAP_VALIDATE_KEY(key)) {
+ return NULL;
+ }
+
+ /* for performance reason, we do not lock/unlock the global TLS map
+ * to check that the key is properly allocated. if the key was not
+ * allocated, the value read from the TLS should always be NULL
+ * due to pthread_key_delete() clearing the values for all threads.
+ */
+ return (void *)(((unsigned *)__get_tls())[key]);
+}
+
+/* Posix mandates that this be defined in <limits.h> but we don't have
+ * it just yet.
+ */
+#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
+# define PTHREAD_DESTRUCTOR_ITERATIONS 4
+#endif
+
+/* this function is called from pthread_exit() to remove all TLS key data
+ * from this thread's TLS area. this must call the destructor of all keys
+ * that have a non-NULL data value (and a non-NULL destructor).
+ *
+ * because destructors can do funky things like deleting/creating other
+ * keys, we need to implement this in a loop
+ */
+static void pthread_key_clean_all(void)
+{
+ tlsmap_t* map;
+ void** tls = (void**)__get_tls();
+ int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
+
+ map = tlsmap_lock();
+
+ for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
+ {
+ int kk, count = 0;
+
+ for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
+ if ( tlsmap_test(map, kk) )
+ {
+ void* data = tls[kk];
+ tls_dtor_t dtor = map->dtors[kk];
+
+ if (data != NULL && dtor != NULL)
+ {
+ /* we need to clear the key data now, this will prevent the
+ * destructor (or a later one) from seeing the old value if
+ * it calls pthread_getspecific() for some odd reason
+ *
+ * we do not do this if 'dtor == NULL' just in case another
+ * destructor function might be responsible for manually
+ * releasing the corresponding data.
+ */
+ tls[kk] = NULL;
+
+ /* because the destructor is free to call pthread_key_create
+ * and/or pthread_key_delete, we need to temporarily unlock
+ * the TLS map
+ */
+ tlsmap_unlock(map);
+ (*dtor)(data);
+ map = tlsmap_lock();
+
+ count += 1;
+ }
+ }
+ }
+
+ /* if we didn't call any destructor, there is no need to check the
+ * TLS data again
+ */
+ if (count == 0)
+ break;
+ }
+ tlsmap_unlock(map);
+}
+
+// man says this should be in <linux/unistd.h>, but it isn't
+extern int tkill(int tid, int sig);
+
+int pthread_kill(pthread_t tid, int sig)
+{
+ int ret;
+ int old_errno = errno;
+ pthread_internal_t * thread = (pthread_internal_t *)tid;
+
+ ret = tkill(thread->kernel_id, sig);
+ if (ret < 0) {
+ ret = errno;
+ errno = old_errno;
+ }
+
+ return ret;
+}
+
+extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
+
+int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
+{
+ return __rt_sigprocmask(how, set, oset, _NSIG / 8);
+}
+
+
+int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
+{
+ const int CLOCK_IDTYPE_BITS = 3;
+ pthread_internal_t* thread = (pthread_internal_t*)tid;
+
+ if (!thread)
+ return ESRCH;
+
+ *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
+ return 0;
+}
+
+
+/* NOTE: this implementation doesn't support a init function that throws a C++ exception
+ * or calls fork()
+ */
+int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
+{
+ static pthread_mutex_t once_lock = PTHREAD_MUTEX_INITIALIZER;
+
+ if (*once_control == PTHREAD_ONCE_INIT) {
+ _normal_lock( &once_lock );
+ if (*once_control == PTHREAD_ONCE_INIT) {
+ (*init_routine)();
+ *once_control = ~PTHREAD_ONCE_INIT;
+ }
+ _normal_unlock( &once_lock );
+ }
+ return 0;
+}