diff options
-rw-r--r-- | base/security_unittest.cc | 84 | ||||
-rw-r--r-- | third_party/tcmalloc/chromium/src/system-alloc.cc | 72 |
2 files changed, 104 insertions, 52 deletions
diff --git a/base/security_unittest.cc b/base/security_unittest.cc index 531159d..3fd4117 100644 --- a/base/security_unittest.cc +++ b/base/security_unittest.cc @@ -6,8 +6,10 @@ #include <stdio.h> #include <stdlib.h> #include <string.h> +#include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> +#include <unistd.h> #include <algorithm> #include <limits> @@ -210,43 +212,59 @@ void PrintProcSelfMaps() { fprintf(stdout, "%s\n", buffer); } +// Check if ptr1 and ptr2 are separated by less than size chars. +bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) { + ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) - + reinterpret_cast<char*>(std::min(ptr1, ptr2)); + return static_cast<size_t>(ptr_diff) <= size; +} + // Check if TCMalloc uses an underlying random memory allocator. TEST(SecurityTest, ALLOC_TEST(RandomMemoryAllocations)) { if (IsTcMallocBypassed()) return; - // Two successsive calls to mmap() have roughly one chance out of 2^6 to - // have the same two high order nibbles, which is what we are looking at in - // this test. (In the implementation, we mask these two nibbles with 0x3f, - // hence the 6 bits). - // With 32 allocations, we see ~16 that end-up in different buckets (i.e. - // zones mapped via mmap(), so the chances of this test flaking is roughly - // 2^-(6*15). - const int kAllocNumber = 32; - // Make kAllocNumber successive allocations of growing size and compare the - // successive pointers to detect adjacent mappings. We grow the size because - // TCMalloc can sometimes over-allocate. - scoped_ptr<char, base::FreeDeleter> ptr[kAllocNumber]; - for (int i = 0; i < kAllocNumber; ++i) { - // Grow the Malloc size slightly sub-exponentially. - const size_t kMallocSize = 1 << (12 + (i>>1)); - ptr[i].reset(static_cast<char*>(malloc(kMallocSize))); - ASSERT_TRUE(ptr[i] != NULL); - if (i > 0) { - // Without mmap randomization, the two high order nibbles - // of a 47 bits userland address address will be identical. - // We're only watching the 6 bits that we actually do touch - // in our implementation. - const uintptr_t kHighOrderMask = 0x3f0000000000ULL; - bool pointer_have_same_high_order = - (reinterpret_cast<size_t>(ptr[i].get()) & kHighOrderMask) == - (reinterpret_cast<size_t>(ptr[i - 1].get()) & kHighOrderMask); - if (!pointer_have_same_high_order) { - // PrintProcSelfMaps(); - return; // Test passes. - } - } - } - ASSERT_TRUE(false); // NOTREACHED(); + size_t kPageSize = 4096; // We support x86_64 only. + // Check that malloc() returns an address that is neither the kernel's + // un-hinted mmap area, nor the current brk() area. The first malloc() may + // not be at a random address because TCMalloc will first exhaust any memory + // that it has allocated early on, before starting the sophisticated + // allocators. + void* default_mmap_heap_address = + mmap(0, kPageSize, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); + ASSERT_NE(default_mmap_heap_address, + static_cast<void*>(MAP_FAILED)); + ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0); + void* brk_heap_address = sbrk(0); + ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1)); + ASSERT_TRUE(brk_heap_address != NULL); + // 1 MB should get us past what TCMalloc pre-allocated before initializing + // the sophisticated allocators. + size_t kAllocSize = 1<<20; + scoped_ptr<char, base::FreeDeleter> ptr( + static_cast<char*>(malloc(kAllocSize))); + ASSERT_TRUE(ptr != NULL); + // If two pointers are separated by less than 512MB, they are considered + // to be in the same area. + // Our random pointer could be anywhere within 0x3fffffffffff (46bits), + // and we are checking that it's not withing 1GB (30 bits) from two + // addresses (brk and mmap heap). We have roughly one chance out of + // 2^15 to flake. + const size_t kAreaRadius = 1<<29; + bool in_default_mmap_heap = ArePointersToSameArea( + ptr.get(), default_mmap_heap_address, kAreaRadius); + EXPECT_FALSE(in_default_mmap_heap); + + bool in_default_brk_heap = ArePointersToSameArea( + ptr.get(), brk_heap_address, kAreaRadius); + EXPECT_FALSE(in_default_brk_heap); + + // In the implementation, we always mask our random addresses with + // kRandomMask, so we use it as an additional detection mechanism. + const uintptr_t kRandomMask = 0x3fffffffffffULL; + bool impossible_random_address = + reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask; + EXPECT_FALSE(impossible_random_address); } #endif // (defined(OS_LINUX) || defined(OS_CHROMEOS)) && defined(__x86_64__) diff --git a/third_party/tcmalloc/chromium/src/system-alloc.cc b/third_party/tcmalloc/chromium/src/system-alloc.cc index 05338963..2141d413e 100644 --- a/third_party/tcmalloc/chromium/src/system-alloc.cc +++ b/third_party/tcmalloc/chromium/src/system-alloc.cc @@ -137,6 +137,18 @@ void raninit(ranctx* x, u4 seed) { } } +// If the kernel cannot honor the hint in arch_get_unmapped_area_topdown, it +// will simply ignore it. So we give a hint that has a good chance of +// working. +// The mmap top-down allocator will normally allocate below TASK_SIZE - gap, +// with a gap that depends on the max stack size. See x86/mm/mmap.c. We +// should make allocations that are below this area, which would be +// 0x7ffbf8000000. +// We use 0x3ffffffff000 as the mask so that we only "pollute" half of the +// address space. In the unlikely case where fragmentation would become an +// issue, the kernel will still have another half to use. +const uint64_t kRandomAddressMask = 0x3ffffffff000ULL; + #endif // defined(ASLR_IS_SUPPORTED) // Give a random "hint" that is suitable for use with mmap(). This cannot make @@ -177,22 +189,51 @@ void* GetRandomAddrHint() { } uint64_t random_address = (static_cast<uint64_t>(ranval(&ctx)) << 32) | ranval(&ctx); - // If the kernel cannot honor the hint in arch_get_unmapped_area_topdown, it - // will simply ignore it. So we give a hint that has a good chance of - // working. - // The mmap top-down allocator will normally allocate below TASK_SIZE - gap, - // with a gap that depends on the max stack size. See x86/mm/mmap.c. We - // should make allocations that are below this area, which would be - // 0x7ffbf8000000. - // We use 0x3ffffffff000 as the mask so that we only "pollute" half of the - // address space. In the unlikely case where fragmentation would become an - // issue, the kernel will still have another half to use. // A a bit-wise "and" won't bias our random distribution. - random_address &= 0x3ffffffff000ULL; + random_address &= kRandomAddressMask; return reinterpret_cast<void*>(random_address); #endif // ASLR_IS_SUPPORTED } +// Allocate |length| bytes of memory using mmap(). The memory will be +// readable and writeable, but not executable. +// Like mmap(), we will return MAP_FAILED on failure. +// |is_aslr_enabled| controls address space layout randomization. When true, we +// will put the first mapping at a random address and will then try to grow it. +// If it's not possible to grow an existing mapping, a new one will be created. +void* AllocWithMmap(size_t length, bool is_aslr_enabled) { + // Note: we are protected by the general TCMalloc_SystemAlloc spinlock. + static void* address_hint = NULL; +#if defined(ASLR_IS_SUPPORTED) + if (is_aslr_enabled && + (!address_hint || + reinterpret_cast<uint64_t>(address_hint) & ~kRandomAddressMask)) { + address_hint = GetRandomAddrHint(); + } +#endif // ASLR_IS_SUPPORTED + + // address_hint is likely to make us grow an existing mapping. + void* result = mmap(address_hint, length, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); +#if defined(ASLR_IS_SUPPORTED) + if (result == address_hint) { + // If mmap() succeeded at a address_hint, our next mmap() will try to grow + // the current mapping as long as it's compatible with our ASLR mask. + // This has been done for performance reasons, see crbug.com/173371. + // It should be possible to strike a better balance between performance + // and security but will be done at a later date. + // If this overflows, it could only set address_hint to NULL, which is + // what we want (and can't happen on the currently supported architecture). + address_hint = static_cast<char*>(result) + length; + } else { + // mmap failed or a collision prevented the kernel from honoring the hint, + // reset the hint. + address_hint = NULL; + } +#endif // ASLR_IS_SUPPORTED + return result; +} + } // Anonymous namespace to avoid name conflicts on "CheckAddressBits". COMPILE_ASSERT(kAddressBits <= 8 * sizeof(void*), @@ -405,14 +446,7 @@ void* MmapSysAllocator::Alloc(size_t size, size_t *actual_size, // size + alignment < (1<<NBITS). // and extra <= alignment // therefore size + extra < (1<<NBITS) - void* address_hint = NULL; - if (FLAGS_malloc_random_allocator) { - address_hint = GetRandomAddrHint(); - } - void* result = mmap(address_hint, size + extra, - PROT_READ|PROT_WRITE, - MAP_PRIVATE|MAP_ANONYMOUS, - -1, 0); + void* result = AllocWithMmap(size + extra, FLAGS_malloc_random_allocator); if (result == reinterpret_cast<void*>(MAP_FAILED)) { return NULL; } |