diff options
Diffstat (limited to 'cc/animation')
-rw-r--r-- | cc/animation/timing_function.cc | 123 | ||||
-rw-r--r-- | cc/animation/timing_function.h | 8 | ||||
-rw-r--r-- | cc/animation/timing_function_unittest.cc | 30 |
3 files changed, 83 insertions, 78 deletions
diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc index 769e9f0..f5a4f9f 100644 --- a/cc/animation/timing_function.cc +++ b/cc/animation/timing_function.cc @@ -2,84 +2,66 @@ // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. +#include <algorithm> + +#include "base/logging.h" #include "cc/animation/timing_function.h" -#include "third_party/skia/include/core/SkMath.h" +namespace cc { -// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method -// is available in the public Skia API, we should switch to using that. -// http://crbug.com/159735 namespace { -// Dot14 has 14 bits for decimal places, and the remainder for whole numbers. -typedef int Dot14; -#define DOT14_ONE (1 << 14) -#define DOT14_HALF (1 << 13) +static const double BEZIER_EPSILON = 1e-7; +static const int MAX_STEPS = 30; -static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) { - return (a * b + DOT14_HALF) >> 14; +static double eval_bezier(double x1, double x2, double t) { + const double x1_times_3 = 3.0 * x1; + const double x2_times_3 = 3.0 * x2; + const double h3 = x1_times_3; + const double h1 = x1_times_3 - x2_times_3 + 1.0; + const double h2 = x2_times_3 - 6.0 * x1; + return t * (t * (t * h1 + h2) + h3); } -static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) { - return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t); -} - -static inline Dot14 PinAndConvert(SkScalar x) { - if (x <= 0) - return 0; - if (x >= SK_Scalar1) - return DOT14_ONE; - return SkScalarToFixed(x) >> 2; -} - -SkScalar SkUnitCubicInterp(SkScalar bx, - SkScalar by, - SkScalar cx, - SkScalar cy, - SkScalar value) { - Dot14 x = PinAndConvert(value); - - if (x == 0) - return 0; - if (x == DOT14_ONE) - return SK_Scalar1; - - Dot14 b = PinAndConvert(bx); - Dot14 c = PinAndConvert(cx); - - // Now compute our coefficients from the control points. - // t -> 3b - // t^2 -> 3c - 6b - // t^3 -> 3b - 3c + 1 - Dot14 A = 3 * b; - Dot14 B = 3 * (c - 2 * b); - Dot14 C = 3 * (b - c) + DOT14_ONE; - - // Now search for a t value given x. - Dot14 t = DOT14_HALF; - Dot14 dt = DOT14_HALF; - for (int i = 0; i < 13; i++) { - dt >>= 1; - Dot14 guess = EvalCubic(t, A, B, C); - if (x < guess) - t -= dt; - else - t += dt; +static double bezier_interp(double x1, + double y1, + double x2, + double y2, + double x) { + DCHECK_GE(1.0, x1); + DCHECK_LE(0.0, x1); + DCHECK_GE(1.0, x2); + DCHECK_LE(0.0, x2); + + x1 = std::min(std::max(x1, 0.0), 1.0); + x2 = std::min(std::max(x2, 0.0), 1.0); + x = std::min(std::max(x, 0.0), 1.0); + + // Step 1. Find the t corresponding to the given x. I.e., we want t such that + // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie + // within (0, 1). + // + // We're just going to do bisection for now (for simplicity), but we could + // easily do some newton steps if this turns out to be a bottleneck. + double t = 0.0; + double step = 1.0; + for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { + const double error = eval_bezier(x1, x2, t) - x; + if (fabs(error) < BEZIER_EPSILON) + break; + t += error > 0.0 ? -step : step; } - // Now we have t, so compute the coefficient for Y and evaluate. - b = PinAndConvert(by); - c = PinAndConvert(cy); - A = 3 * b; - B = 3 * (c - 2 * b); - C = 3 * (b - c) + DOT14_ONE; - return SkFixedToScalar(EvalCubic(t, A, B, C) << 2); + // We should have terminated the above loop because we got close to x, not + // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. + DCHECK_GT(BEZIER_EPSILON, fabs(eval_bezier(x1, x2, t) - x)); + + // Step 2. Return the interpolated y values at the t we computed above. + return eval_bezier(y1, y2, t); } } // namespace -namespace cc { - TimingFunction::TimingFunction() {} TimingFunction::~TimingFunction() {} @@ -89,10 +71,7 @@ double TimingFunction::Duration() const { } scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( - double x1, - double y1, - double x2, - double y2) { + double x1, double y1, double x2, double y2) { return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); } @@ -100,16 +79,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, double y1, double x2, double y2) - : x1_(SkDoubleToScalar(x1)), - y1_(SkDoubleToScalar(y1)), - x2_(SkDoubleToScalar(x2)), - y2_(SkDoubleToScalar(y2)) {} + : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} CubicBezierTimingFunction::~CubicBezierTimingFunction() {} float CubicBezierTimingFunction::GetValue(double x) const { - SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x); - return SkScalarToFloat(value); + return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x)); } scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const { diff --git a/cc/animation/timing_function.h b/cc/animation/timing_function.h index b1080e6..3aa2f25 100644 --- a/cc/animation/timing_function.h +++ b/cc/animation/timing_function.h @@ -39,10 +39,10 @@ class CC_EXPORT CubicBezierTimingFunction : public TimingFunction { protected: CubicBezierTimingFunction(double x1, double y1, double x2, double y2); - SkScalar x1_; - SkScalar y1_; - SkScalar x2_; - SkScalar y2_; + double x1_; + double y1_; + double x2_; + double y2_; private: DISALLOW_ASSIGN(CubicBezierTimingFunction); diff --git a/cc/animation/timing_function_unittest.cc b/cc/animation/timing_function_unittest.cc index c076d52..2caa12d 100644 --- a/cc/animation/timing_function_unittest.cc +++ b/cc/animation/timing_function_unittest.cc @@ -37,5 +37,35 @@ TEST(TimingFunctionTest, CubicBezierTimingFunction) { EXPECT_NEAR(function->GetValue(1), 1, epsilon); } +// Tests that the bezier timing function works with knots with y not in (0, 1). +TEST(TimingFunctionTest, CubicBezierTimingFunctionUnclampedYValues) { + scoped_ptr<CubicBezierTimingFunction> function = + CubicBezierTimingFunction::Create(0.5, -1.0, 0.5, 2.0); + + double epsilon = 0.00015; + + EXPECT_NEAR(function->GetValue(0.0), 0.0, epsilon); + EXPECT_NEAR(function->GetValue(0.05), -0.08954, epsilon); + EXPECT_NEAR(function->GetValue(0.1), -0.15613, epsilon); + EXPECT_NEAR(function->GetValue(0.15), -0.19641, epsilon); + EXPECT_NEAR(function->GetValue(0.2), -0.20651, epsilon); + EXPECT_NEAR(function->GetValue(0.25), -0.18232, epsilon); + EXPECT_NEAR(function->GetValue(0.3), -0.11992, epsilon); + EXPECT_NEAR(function->GetValue(0.35), -0.01672, epsilon); + EXPECT_NEAR(function->GetValue(0.4), 0.12660, epsilon); + EXPECT_NEAR(function->GetValue(0.45), 0.30349, epsilon); + EXPECT_NEAR(function->GetValue(0.5), 0.50000, epsilon); + EXPECT_NEAR(function->GetValue(0.55), 0.69651, epsilon); + EXPECT_NEAR(function->GetValue(0.6), 0.87340, epsilon); + EXPECT_NEAR(function->GetValue(0.65), 1.01672, epsilon); + EXPECT_NEAR(function->GetValue(0.7), 1.11992, epsilon); + EXPECT_NEAR(function->GetValue(0.75), 1.18232, epsilon); + EXPECT_NEAR(function->GetValue(0.8), 1.20651, epsilon); + EXPECT_NEAR(function->GetValue(0.85), 1.19641, epsilon); + EXPECT_NEAR(function->GetValue(0.9), 1.15613, epsilon); + EXPECT_NEAR(function->GetValue(0.95), 1.08954, epsilon); + EXPECT_NEAR(function->GetValue(1.0), 1.0, epsilon); +} + } // namespace } // namespace cc |