summaryrefslogtreecommitdiffstats
path: root/media/audio/win/audio_unified_win.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/audio/win/audio_unified_win.cc')
-rw-r--r--media/audio/win/audio_unified_win.cc984
1 files changed, 984 insertions, 0 deletions
diff --git a/media/audio/win/audio_unified_win.cc b/media/audio/win/audio_unified_win.cc
new file mode 100644
index 0000000..901c8b8
--- /dev/null
+++ b/media/audio/win/audio_unified_win.cc
@@ -0,0 +1,984 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "media/audio/win/audio_unified_win.h"
+
+#include <Functiondiscoverykeys_devpkey.h>
+
+#include "base/debug/trace_event.h"
+#ifndef NDEBUG
+#include "base/file_util.h"
+#include "base/path_service.h"
+#endif
+#include "base/time/time.h"
+#include "base/win/scoped_com_initializer.h"
+#include "media/audio/win/audio_manager_win.h"
+#include "media/audio/win/avrt_wrapper_win.h"
+#include "media/audio/win/core_audio_util_win.h"
+
+using base::win::ScopedComPtr;
+using base::win::ScopedCOMInitializer;
+using base::win::ScopedCoMem;
+
+// Smoothing factor in exponential smoothing filter where 0 < alpha < 1.
+// Larger values of alpha reduce the level of smoothing.
+// See http://en.wikipedia.org/wiki/Exponential_smoothing for details.
+static const double kAlpha = 0.1;
+
+// Compute a rate compensation which always attracts us back to a specified
+// target level over a period of |kCorrectionTimeSeconds|.
+static const double kCorrectionTimeSeconds = 0.1;
+
+#ifndef NDEBUG
+// Max number of columns in the output text file |kUnifiedAudioDebugFileName|.
+// See LogElementNames enumerator for details on what each column represents.
+static const size_t kMaxNumSampleTypes = 4;
+
+static const size_t kMaxNumParams = 2;
+
+// Max number of rows in the output file |kUnifiedAudioDebugFileName|.
+// Each row corresponds to one set of sample values for (approximately) the
+// same time instant (stored in the first column).
+static const size_t kMaxFileSamples = 10000;
+
+// Name of output debug file used for off-line analysis of measurements which
+// can be utilized for performance tuning of this class.
+static const char kUnifiedAudioDebugFileName[] = "unified_win_debug.txt";
+
+// Name of output debug file used for off-line analysis of measurements.
+// This file will contain a list of audio parameters.
+static const char kUnifiedAudioParamsFileName[] = "unified_win_params.txt";
+#endif
+
+// Use the acquired IAudioClock interface to derive a time stamp of the audio
+// sample which is currently playing through the speakers.
+static double SpeakerStreamPosInMilliseconds(IAudioClock* clock) {
+ UINT64 device_frequency = 0, position = 0;
+ if (FAILED(clock->GetFrequency(&device_frequency)) ||
+ FAILED(clock->GetPosition(&position, NULL))) {
+ return 0.0;
+ }
+ return base::Time::kMillisecondsPerSecond *
+ (static_cast<double>(position) / device_frequency);
+}
+
+// Get a time stamp in milliseconds given number of audio frames in |num_frames|
+// using the current sample rate |fs| as scale factor.
+// Example: |num_frames| = 960 and |fs| = 48000 => 20 [ms].
+static double CurrentStreamPosInMilliseconds(UINT64 num_frames, DWORD fs) {
+ return base::Time::kMillisecondsPerSecond *
+ (static_cast<double>(num_frames) / fs);
+}
+
+// Convert a timestamp in milliseconds to byte units given the audio format
+// in |format|.
+// Example: |ts_milliseconds| equals 10, sample rate is 48000 and frame size
+// is 4 bytes per audio frame => 480 * 4 = 1920 [bytes].
+static int MillisecondsToBytes(double ts_milliseconds,
+ const WAVEFORMATPCMEX& format) {
+ double seconds = ts_milliseconds / base::Time::kMillisecondsPerSecond;
+ return static_cast<int>(seconds * format.Format.nSamplesPerSec *
+ format.Format.nBlockAlign + 0.5);
+}
+
+// Convert frame count to milliseconds given the audio format in |format|.
+static double FrameCountToMilliseconds(int num_frames,
+ const WAVEFORMATPCMEX& format) {
+ return (base::Time::kMillisecondsPerSecond * num_frames) /
+ static_cast<double>(format.Format.nSamplesPerSec);
+}
+
+namespace media {
+
+WASAPIUnifiedStream::WASAPIUnifiedStream(AudioManagerWin* manager,
+ const AudioParameters& params,
+ const std::string& input_device_id)
+ : creating_thread_id_(base::PlatformThread::CurrentId()),
+ manager_(manager),
+ params_(params),
+ input_channels_(params.input_channels()),
+ output_channels_(params.channels()),
+ input_device_id_(input_device_id),
+ share_mode_(CoreAudioUtil::GetShareMode()),
+ opened_(false),
+ volume_(1.0),
+ output_buffer_size_frames_(0),
+ input_buffer_size_frames_(0),
+ endpoint_render_buffer_size_frames_(0),
+ endpoint_capture_buffer_size_frames_(0),
+ num_written_frames_(0),
+ total_delay_ms_(0.0),
+ total_delay_bytes_(0),
+ source_(NULL),
+ input_callback_received_(false),
+ io_sample_rate_ratio_(1),
+ target_fifo_frames_(0),
+ average_delta_(0),
+ fifo_rate_compensation_(1),
+ update_output_delay_(false),
+ capture_delay_ms_(0) {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::WASAPIUnifiedStream");
+ VLOG(1) << "WASAPIUnifiedStream::WASAPIUnifiedStream()";
+ DCHECK(manager_);
+
+ VLOG(1) << "Input channels : " << input_channels_;
+ VLOG(1) << "Output channels: " << output_channels_;
+ VLOG(1) << "Sample rate : " << params_.sample_rate();
+ VLOG(1) << "Buffer size : " << params.frames_per_buffer();
+
+#ifndef NDEBUG
+ input_time_stamps_.reset(new int64[kMaxFileSamples]);
+ num_frames_in_fifo_.reset(new int[kMaxFileSamples]);
+ resampler_margin_.reset(new int[kMaxFileSamples]);
+ fifo_rate_comps_.reset(new double[kMaxFileSamples]);
+ num_elements_.reset(new int[kMaxNumSampleTypes]);
+ std::fill(num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes, 0);
+ input_params_.reset(new int[kMaxNumParams]);
+ output_params_.reset(new int[kMaxNumParams]);
+#endif
+
+ DVLOG_IF(1, share_mode_ == AUDCLNT_SHAREMODE_EXCLUSIVE)
+ << "Core Audio (WASAPI) EXCLUSIVE MODE is enabled.";
+
+ // Load the Avrt DLL if not already loaded. Required to support MMCSS.
+ bool avrt_init = avrt::Initialize();
+ DCHECK(avrt_init) << "Failed to load the avrt.dll";
+
+ // All events are auto-reset events and non-signaled initially.
+
+ // Create the event which the audio engine will signal each time a buffer
+ // has been recorded.
+ capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
+
+ // Create the event which will be set in Stop() when straeming shall stop.
+ stop_streaming_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
+}
+
+WASAPIUnifiedStream::~WASAPIUnifiedStream() {
+ VLOG(1) << "WASAPIUnifiedStream::~WASAPIUnifiedStream()";
+#ifndef NDEBUG
+ base::FilePath data_file_name;
+ PathService::Get(base::DIR_EXE, &data_file_name);
+ data_file_name = data_file_name.AppendASCII(kUnifiedAudioDebugFileName);
+ data_file_ = base::OpenFile(data_file_name, "wt");
+ DVLOG(1) << ">> Output file " << data_file_name.value() << " is created.";
+
+ size_t n = 0;
+ size_t elements_to_write = *std::min_element(
+ num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes);
+ while (n < elements_to_write) {
+ fprintf(data_file_, "%I64d %d %d %10.9f\n",
+ input_time_stamps_[n],
+ num_frames_in_fifo_[n],
+ resampler_margin_[n],
+ fifo_rate_comps_[n]);
+ ++n;
+ }
+ base::CloseFile(data_file_);
+
+ base::FilePath param_file_name;
+ PathService::Get(base::DIR_EXE, &param_file_name);
+ param_file_name = param_file_name.AppendASCII(kUnifiedAudioParamsFileName);
+ param_file_ = base::OpenFile(param_file_name, "wt");
+ DVLOG(1) << ">> Output file " << param_file_name.value() << " is created.";
+ fprintf(param_file_, "%d %d\n", input_params_[0], input_params_[1]);
+ fprintf(param_file_, "%d %d\n", output_params_[0], output_params_[1]);
+ base::CloseFile(param_file_);
+#endif
+}
+
+bool WASAPIUnifiedStream::Open() {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::Open");
+ DVLOG(1) << "WASAPIUnifiedStream::Open()";
+ DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
+ if (opened_)
+ return true;
+
+ AudioParameters hw_output_params;
+ HRESULT hr = CoreAudioUtil::GetPreferredAudioParameters(
+ eRender, eConsole, &hw_output_params);
+ if (FAILED(hr)) {
+ LOG(ERROR) << "Failed to get preferred output audio parameters.";
+ return false;
+ }
+
+ AudioParameters hw_input_params;
+ if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
+ // Query native parameters for the default capture device.
+ hr = CoreAudioUtil::GetPreferredAudioParameters(
+ eCapture, eConsole, &hw_input_params);
+ } else {
+ // Query native parameters for the capture device given by
+ // |input_device_id_|.
+ hr = CoreAudioUtil::GetPreferredAudioParameters(
+ input_device_id_, &hw_input_params);
+ }
+ if (FAILED(hr)) {
+ LOG(ERROR) << "Failed to get preferred input audio parameters.";
+ return false;
+ }
+
+ // It is currently only possible to open up the output audio device using
+ // the native number of channels.
+ if (output_channels_ != hw_output_params.channels()) {
+ LOG(ERROR) << "Audio device does not support requested output channels.";
+ return false;
+ }
+
+ // It is currently only possible to open up the input audio device using
+ // the native number of channels. If the client asks for a higher channel
+ // count, we will do channel upmixing in this class. The most typical
+ // example is that the client provides stereo but the hardware can only be
+ // opened in mono mode. We will do mono to stereo conversion in this case.
+ if (input_channels_ < hw_input_params.channels()) {
+ LOG(ERROR) << "Audio device does not support requested input channels.";
+ return false;
+ } else if (input_channels_ > hw_input_params.channels()) {
+ ChannelLayout input_layout =
+ GuessChannelLayout(hw_input_params.channels());
+ ChannelLayout output_layout = GuessChannelLayout(input_channels_);
+ channel_mixer_.reset(new ChannelMixer(input_layout, output_layout));
+ DVLOG(1) << "Remixing input channel layout from " << input_layout
+ << " to " << output_layout << "; from "
+ << hw_input_params.channels() << " channels to "
+ << input_channels_;
+ }
+
+ if (hw_output_params.sample_rate() != params_.sample_rate()) {
+ LOG(ERROR) << "Requested sample-rate: " << params_.sample_rate()
+ << " must match the hardware sample-rate: "
+ << hw_output_params.sample_rate();
+ return false;
+ }
+
+ if (hw_output_params.frames_per_buffer() != params_.frames_per_buffer()) {
+ LOG(ERROR) << "Requested buffer size: " << params_.frames_per_buffer()
+ << " must match the hardware buffer size: "
+ << hw_output_params.frames_per_buffer();
+ return false;
+ }
+
+ // Set up WAVEFORMATPCMEX structures for input and output given the specified
+ // audio parameters.
+ SetIOFormats(hw_input_params, params_);
+
+ // Create the input and output busses.
+ input_bus_ = AudioBus::Create(
+ hw_input_params.channels(), input_buffer_size_frames_);
+ output_bus_ = AudioBus::Create(params_);
+
+ // One extra bus is needed for the input channel mixing case.
+ if (channel_mixer_) {
+ DCHECK_LT(hw_input_params.channels(), input_channels_);
+ // The size of the |channel_bus_| must be the same as the size of the
+ // output bus to ensure that the channel manager can deal with both
+ // resampled and non-resampled data as input.
+ channel_bus_ = AudioBus::Create(
+ input_channels_, params_.frames_per_buffer());
+ }
+
+ // Check if FIFO and resampling is required to match the input rate to the
+ // output rate. If so, a special thread loop, optimized for this case, will
+ // be used. This mode is also called varispeed mode.
+ // Note that we can also use this mode when input and output rates are the
+ // same but native buffer sizes differ (can happen if two different audio
+ // devices are used). For this case, the resampler uses a target ratio of
+ // 1.0 but SetRatio is called to compensate for clock-drift. The FIFO is
+ // required to compensate for the difference in buffer sizes.
+ // TODO(henrika): we could perhaps improve the performance for the second
+ // case here by only using the FIFO and avoid resampling. Not sure how much
+ // that would give and we risk not compensation for clock drift.
+ if (hw_input_params.sample_rate() != params_.sample_rate() ||
+ hw_input_params.frames_per_buffer() != params_.frames_per_buffer()) {
+ DoVarispeedInitialization(hw_input_params, params_);
+ }
+
+ // Render side (event driven only in varispeed mode):
+
+ ScopedComPtr<IAudioClient> audio_output_client =
+ CoreAudioUtil::CreateDefaultClient(eRender, eConsole);
+ if (!audio_output_client)
+ return false;
+
+ if (!CoreAudioUtil::IsFormatSupported(audio_output_client,
+ share_mode_,
+ &output_format_)) {
+ return false;
+ }
+
+ if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
+ // The |render_event_| will be NULL unless varispeed mode is utilized.
+ hr = CoreAudioUtil::SharedModeInitialize(
+ audio_output_client, &output_format_, render_event_.Get(),
+ &endpoint_render_buffer_size_frames_);
+ } else {
+ // TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
+ }
+ if (FAILED(hr))
+ return false;
+
+ ScopedComPtr<IAudioRenderClient> audio_render_client =
+ CoreAudioUtil::CreateRenderClient(audio_output_client);
+ if (!audio_render_client)
+ return false;
+
+ // Capture side (always event driven but format depends on varispeed or not):
+
+ ScopedComPtr<IAudioClient> audio_input_client;
+ if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
+ audio_input_client = CoreAudioUtil::CreateDefaultClient(eCapture, eConsole);
+ } else {
+ ScopedComPtr<IMMDevice> audio_input_device(
+ CoreAudioUtil::CreateDevice(input_device_id_));
+ audio_input_client = CoreAudioUtil::CreateClient(audio_input_device);
+ }
+ if (!audio_input_client)
+ return false;
+
+ if (!CoreAudioUtil::IsFormatSupported(audio_input_client,
+ share_mode_,
+ &input_format_)) {
+ return false;
+ }
+
+ if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
+ // Include valid event handle for event-driven initialization.
+ // The input side is always event driven independent of if varispeed is
+ // used or not.
+ hr = CoreAudioUtil::SharedModeInitialize(
+ audio_input_client, &input_format_, capture_event_.Get(),
+ &endpoint_capture_buffer_size_frames_);
+ } else {
+ // TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
+ }
+ if (FAILED(hr))
+ return false;
+
+ ScopedComPtr<IAudioCaptureClient> audio_capture_client =
+ CoreAudioUtil::CreateCaptureClient(audio_input_client);
+ if (!audio_capture_client)
+ return false;
+
+ // Varispeed mode requires additional preparations.
+ if (VarispeedMode())
+ ResetVarispeed();
+
+ // Store all valid COM interfaces.
+ audio_output_client_ = audio_output_client;
+ audio_render_client_ = audio_render_client;
+ audio_input_client_ = audio_input_client;
+ audio_capture_client_ = audio_capture_client;
+
+ opened_ = true;
+ return SUCCEEDED(hr);
+}
+
+void WASAPIUnifiedStream::Start(AudioSourceCallback* callback) {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::Start");
+ DVLOG(1) << "WASAPIUnifiedStream::Start()";
+ DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
+ CHECK(callback);
+ CHECK(opened_);
+
+ if (audio_io_thread_) {
+ CHECK_EQ(callback, source_);
+ return;
+ }
+
+ source_ = callback;
+
+ if (VarispeedMode()) {
+ ResetVarispeed();
+ fifo_rate_compensation_ = 1.0;
+ average_delta_ = 0.0;
+ input_callback_received_ = false;
+ update_output_delay_ = false;
+ }
+
+ // Create and start the thread that will listen for capture events.
+ // We will also listen on render events on the same thread if varispeed
+ // mode is utilized.
+ audio_io_thread_.reset(
+ new base::DelegateSimpleThread(this, "wasapi_io_thread"));
+ audio_io_thread_->Start();
+ if (!audio_io_thread_->HasBeenStarted()) {
+ DLOG(ERROR) << "Failed to start WASAPI IO thread.";
+ return;
+ }
+
+ // Start input streaming data between the endpoint buffer and the audio
+ // engine.
+ HRESULT hr = audio_input_client_->Start();
+ if (FAILED(hr)) {
+ StopAndJoinThread(hr);
+ return;
+ }
+
+ // Ensure that the endpoint buffer is prepared with silence.
+ if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
+ if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
+ audio_output_client_, audio_render_client_)) {
+ DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
+ return;
+ }
+ }
+ num_written_frames_ = endpoint_render_buffer_size_frames_;
+
+ // Start output streaming data between the endpoint buffer and the audio
+ // engine.
+ hr = audio_output_client_->Start();
+ if (FAILED(hr)) {
+ StopAndJoinThread(hr);
+ return;
+ }
+}
+
+void WASAPIUnifiedStream::Stop() {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::Stop");
+ DVLOG(1) << "WASAPIUnifiedStream::Stop()";
+ DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
+ if (!audio_io_thread_)
+ return;
+
+ // Stop input audio streaming.
+ HRESULT hr = audio_input_client_->Stop();
+ if (FAILED(hr)) {
+ DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
+ << "Failed to stop input streaming: " << std::hex << hr;
+ }
+
+ // Stop output audio streaming.
+ hr = audio_output_client_->Stop();
+ if (FAILED(hr)) {
+ DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
+ << "Failed to stop output streaming: " << std::hex << hr;
+ }
+
+ // Wait until the thread completes and perform cleanup.
+ SetEvent(stop_streaming_event_.Get());
+ audio_io_thread_->Join();
+ audio_io_thread_.reset();
+
+ // Ensure that we don't quit the main thread loop immediately next
+ // time Start() is called.
+ ResetEvent(stop_streaming_event_.Get());
+
+ // Clear source callback, it'll be set again on the next Start() call.
+ source_ = NULL;
+
+ // Flush all pending data and reset the audio clock stream position to 0.
+ hr = audio_output_client_->Reset();
+ if (FAILED(hr)) {
+ DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
+ << "Failed to reset output streaming: " << std::hex << hr;
+ }
+
+ audio_input_client_->Reset();
+ if (FAILED(hr)) {
+ DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
+ << "Failed to reset input streaming: " << std::hex << hr;
+ }
+
+ // Extra safety check to ensure that the buffers are cleared.
+ // If the buffers are not cleared correctly, the next call to Start()
+ // would fail with AUDCLNT_E_BUFFER_ERROR at IAudioRenderClient::GetBuffer().
+ // TODO(henrika): this check is is only needed for shared-mode streams.
+ UINT32 num_queued_frames = 0;
+ audio_output_client_->GetCurrentPadding(&num_queued_frames);
+ DCHECK_EQ(0u, num_queued_frames);
+}
+
+void WASAPIUnifiedStream::Close() {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::Close");
+ DVLOG(1) << "WASAPIUnifiedStream::Close()";
+ DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
+
+ // It is valid to call Close() before calling open or Start().
+ // It is also valid to call Close() after Start() has been called.
+ Stop();
+
+ // Inform the audio manager that we have been closed. This will cause our
+ // destruction.
+ manager_->ReleaseOutputStream(this);
+}
+
+void WASAPIUnifiedStream::SetVolume(double volume) {
+ DVLOG(1) << "SetVolume(volume=" << volume << ")";
+ if (volume < 0 || volume > 1)
+ return;
+ volume_ = volume;
+}
+
+void WASAPIUnifiedStream::GetVolume(double* volume) {
+ DVLOG(1) << "GetVolume()";
+ *volume = static_cast<double>(volume_);
+}
+
+
+void WASAPIUnifiedStream::ProvideInput(int frame_delay, AudioBus* audio_bus) {
+ // TODO(henrika): utilize frame_delay?
+ // A non-zero framed delay means multiple callbacks were necessary to
+ // fulfill the requested number of frames.
+ if (frame_delay > 0)
+ DVLOG(3) << "frame_delay: " << frame_delay;
+
+#ifndef NDEBUG
+ resampler_margin_[num_elements_[RESAMPLER_MARGIN]] =
+ fifo_->frames() - audio_bus->frames();
+ num_elements_[RESAMPLER_MARGIN]++;
+#endif
+
+ if (fifo_->frames() < audio_bus->frames()) {
+ DVLOG(ERROR) << "Not enough data in the FIFO ("
+ << fifo_->frames() << " < " << audio_bus->frames() << ")";
+ audio_bus->Zero();
+ return;
+ }
+
+ fifo_->Consume(audio_bus, 0, audio_bus->frames());
+}
+
+void WASAPIUnifiedStream::SetIOFormats(const AudioParameters& input_params,
+ const AudioParameters& output_params) {
+ for (int n = 0; n < 2; ++n) {
+ const AudioParameters& params = (n == 0) ? input_params : output_params;
+ WAVEFORMATPCMEX* xformat = (n == 0) ? &input_format_ : &output_format_;
+ WAVEFORMATEX* format = &xformat->Format;
+
+ // Begin with the WAVEFORMATEX structure that specifies the basic format.
+ format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
+ format->nChannels = params.channels();
+ format->nSamplesPerSec = params.sample_rate();
+ format->wBitsPerSample = params.bits_per_sample();
+ format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
+ format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;
+ format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
+
+ // Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE.
+ // Note that we always open up using the native channel layout.
+ (*xformat).Samples.wValidBitsPerSample = format->wBitsPerSample;
+ (*xformat).dwChannelMask =
+ CoreAudioUtil::GetChannelConfig(
+ std::string(), n == 0 ? eCapture : eRender);
+ (*xformat).SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
+ }
+
+ input_buffer_size_frames_ = input_params.frames_per_buffer();
+ output_buffer_size_frames_ = output_params.frames_per_buffer();
+ VLOG(1) << "#audio frames per input buffer : " << input_buffer_size_frames_;
+ VLOG(1) << "#audio frames per output buffer: " << output_buffer_size_frames_;
+
+#ifndef NDEBUG
+ input_params_[0] = input_format_.Format.nSamplesPerSec;
+ input_params_[1] = input_buffer_size_frames_;
+ output_params_[0] = output_format_.Format.nSamplesPerSec;
+ output_params_[1] = output_buffer_size_frames_;
+#endif
+}
+
+void WASAPIUnifiedStream::DoVarispeedInitialization(
+ const AudioParameters& input_params, const AudioParameters& output_params) {
+ DVLOG(1) << "WASAPIUnifiedStream::DoVarispeedInitialization()";
+
+ // A FIFO is required in this mode for input to output buffering.
+ // Note that it will add some latency.
+ fifo_.reset(new AudioFifo(input_params.channels(), kFifoSize));
+ VLOG(1) << "Using FIFO of size " << fifo_->max_frames()
+ << " (#channels=" << input_params.channels() << ")";
+
+ // Create the multi channel resampler using the initial sample rate ratio.
+ // We will call MultiChannelResampler::SetRatio() during runtime to
+ // allow arbitrary combinations of input and output devices running off
+ // different clocks and using different drivers, with potentially
+ // differing sample-rates. Note that the requested block size is given by
+ // the native input buffer size |input_buffer_size_frames_|.
+ io_sample_rate_ratio_ = input_params.sample_rate() /
+ static_cast<double>(output_params.sample_rate());
+ DVLOG(2) << "io_sample_rate_ratio: " << io_sample_rate_ratio_;
+ resampler_.reset(new MultiChannelResampler(
+ input_params.channels(), io_sample_rate_ratio_, input_buffer_size_frames_,
+ base::Bind(&WASAPIUnifiedStream::ProvideInput, base::Unretained(this))));
+ VLOG(1) << "Resampling from " << input_params.sample_rate() << " to "
+ << output_params.sample_rate();
+
+ // The optimal number of frames we'd like to keep in the FIFO at all times.
+ // The actual size will vary but the goal is to ensure that the average size
+ // is given by this value.
+ target_fifo_frames_ = kTargetFifoSafetyFactor * input_buffer_size_frames_;
+ VLOG(1) << "Target FIFO size: " << target_fifo_frames_;
+
+ // Create the event which the audio engine will signal each time it
+ // wants an audio buffer to render.
+ render_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
+
+ // Allocate memory for temporary audio bus used to store resampled input
+ // audio.
+ resampled_bus_ = AudioBus::Create(
+ input_params.channels(), output_buffer_size_frames_);
+
+ // Buffer initial silence corresponding to target I/O buffering.
+ ResetVarispeed();
+}
+
+void WASAPIUnifiedStream::ResetVarispeed() {
+ DCHECK(VarispeedMode());
+
+ // Buffer initial silence corresponding to target I/O buffering.
+ fifo_->Clear();
+ scoped_ptr<AudioBus> silence =
+ AudioBus::Create(input_format_.Format.nChannels,
+ target_fifo_frames_);
+ silence->Zero();
+ fifo_->Push(silence.get());
+ resampler_->Flush();
+}
+
+void WASAPIUnifiedStream::Run() {
+ ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
+
+ // Increase the thread priority.
+ audio_io_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
+
+ // Enable MMCSS to ensure that this thread receives prioritized access to
+ // CPU resources.
+ // TODO(henrika): investigate if it is possible to include these additional
+ // settings in SetThreadPriority() as well.
+ DWORD task_index = 0;
+ HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
+ &task_index);
+ bool mmcss_is_ok =
+ (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
+ if (!mmcss_is_ok) {
+ // Failed to enable MMCSS on this thread. It is not fatal but can lead
+ // to reduced QoS at high load.
+ DWORD err = GetLastError();
+ LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
+ }
+
+ // The IAudioClock interface enables us to monitor a stream's data
+ // rate and the current position in the stream. Allocate it before we
+ // start spinning.
+ ScopedComPtr<IAudioClock> audio_output_clock;
+ HRESULT hr = audio_output_client_->GetService(
+ __uuidof(IAudioClock), audio_output_clock.ReceiveVoid());
+ LOG_IF(WARNING, FAILED(hr)) << "Failed to create IAudioClock: "
+ << std::hex << hr;
+
+ bool streaming = true;
+ bool error = false;
+
+ HANDLE wait_array[3];
+ size_t num_handles = 0;
+ wait_array[num_handles++] = stop_streaming_event_;
+ wait_array[num_handles++] = capture_event_;
+ if (render_event_) {
+ // One extra event handle is needed in varispeed mode.
+ wait_array[num_handles++] = render_event_;
+ }
+
+ // Keep streaming audio until stop event is signaled.
+ // Capture events are always used but render events are only active in
+ // varispeed mode.
+ while (streaming && !error) {
+ // Wait for a close-down event, or a new capture event.
+ DWORD wait_result = WaitForMultipleObjects(num_handles,
+ wait_array,
+ FALSE,
+ INFINITE);
+ switch (wait_result) {
+ case WAIT_OBJECT_0 + 0:
+ // |stop_streaming_event_| has been set.
+ streaming = false;
+ break;
+ case WAIT_OBJECT_0 + 1:
+ // |capture_event_| has been set
+ if (VarispeedMode()) {
+ ProcessInputAudio();
+ } else {
+ ProcessInputAudio();
+ ProcessOutputAudio(audio_output_clock);
+ }
+ break;
+ case WAIT_OBJECT_0 + 2:
+ DCHECK(VarispeedMode());
+ // |render_event_| has been set
+ ProcessOutputAudio(audio_output_clock);
+ break;
+ default:
+ error = true;
+ break;
+ }
+ }
+
+ if (streaming && error) {
+ // Stop audio streaming since something has gone wrong in our main thread
+ // loop. Note that, we are still in a "started" state, hence a Stop() call
+ // is required to join the thread properly.
+ audio_input_client_->Stop();
+ audio_output_client_->Stop();
+ PLOG(ERROR) << "WASAPI streaming failed.";
+ }
+
+ // Disable MMCSS.
+ if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
+ PLOG(WARNING) << "Failed to disable MMCSS";
+ }
+}
+
+void WASAPIUnifiedStream::ProcessInputAudio() {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessInputAudio");
+
+ BYTE* data_ptr = NULL;
+ UINT32 num_captured_frames = 0;
+ DWORD flags = 0;
+ UINT64 device_position = 0;
+ UINT64 capture_time_stamp = 0;
+
+ const int bytes_per_sample = input_format_.Format.wBitsPerSample >> 3;
+
+ base::TimeTicks now_tick = base::TimeTicks::HighResNow();
+
+#ifndef NDEBUG
+ if (VarispeedMode()) {
+ input_time_stamps_[num_elements_[INPUT_TIME_STAMP]] =
+ now_tick.ToInternalValue();
+ num_elements_[INPUT_TIME_STAMP]++;
+ }
+#endif
+
+ // Retrieve the amount of data in the capture endpoint buffer.
+ // |endpoint_capture_time_stamp| is the value of the performance
+ // counter at the time that the audio endpoint device recorded
+ // the device position of the first audio frame in the data packet.
+ HRESULT hr = audio_capture_client_->GetBuffer(&data_ptr,
+ &num_captured_frames,
+ &flags,
+ &device_position,
+ &capture_time_stamp);
+ if (FAILED(hr)) {
+ DLOG(ERROR) << "Failed to get data from the capture buffer";
+ return;
+ }
+
+ if (hr == AUDCLNT_S_BUFFER_EMPTY) {
+ // The return coded is a success code but a new packet is *not* available
+ // and none of the output parameters in the GetBuffer() call contains valid
+ // values. Best we can do is to deliver silence and avoid setting
+ // |input_callback_received_| since this only seems to happen for the
+ // initial event(s) on some devices.
+ input_bus_->Zero();
+ } else {
+ // Valid data has been recorded and it is now OK to set the flag which
+ // informs the render side that capturing has started.
+ input_callback_received_ = true;
+ }
+
+ if (num_captured_frames != 0) {
+ if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
+ // Clear out the capture buffer since silence is reported.
+ input_bus_->Zero();
+ } else {
+ // Store captured data in an audio bus after de-interleaving
+ // the data to match the audio bus structure.
+ input_bus_->FromInterleaved(
+ data_ptr, num_captured_frames, bytes_per_sample);
+ }
+ }
+
+ hr = audio_capture_client_->ReleaseBuffer(num_captured_frames);
+ DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
+
+ // Buffer input into FIFO if varispeed mode is used. The render event
+ // will drive resampling of this data to match the output side.
+ if (VarispeedMode()) {
+ int available_frames = fifo_->max_frames() - fifo_->frames();
+ if (input_bus_->frames() <= available_frames) {
+ fifo_->Push(input_bus_.get());
+ }
+#ifndef NDEBUG
+ num_frames_in_fifo_[num_elements_[NUM_FRAMES_IN_FIFO]] =
+ fifo_->frames();
+ num_elements_[NUM_FRAMES_IN_FIFO]++;
+#endif
+ }
+
+ // Save resource by not asking for new delay estimates each time.
+ // These estimates are fairly stable and it is perfectly safe to only
+ // sample at a rate of ~1Hz.
+ // TODO(henrika): we might have to increase the update rate in varispeed
+ // mode since the delay variations are higher in this mode.
+ if ((now_tick - last_delay_sample_time_).InMilliseconds() >
+ kTimeDiffInMillisecondsBetweenDelayMeasurements &&
+ input_callback_received_) {
+ // Calculate the estimated capture delay, i.e., the latency between
+ // the recording time and the time we when we are notified about
+ // the recorded data. Note that the capture time stamp is given in
+ // 100-nanosecond (0.1 microseconds) units.
+ base::TimeDelta diff =
+ now_tick - base::TimeTicks::FromInternalValue(0.1 * capture_time_stamp);
+ capture_delay_ms_ = diff.InMillisecondsF();
+
+ last_delay_sample_time_ = now_tick;
+ update_output_delay_ = true;
+ }
+}
+
+void WASAPIUnifiedStream::ProcessOutputAudio(IAudioClock* audio_output_clock) {
+ TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessOutputAudio");
+
+ if (!input_callback_received_) {
+ if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
+ if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
+ audio_output_client_, audio_render_client_))
+ DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
+ }
+ return;
+ }
+
+ // Rate adjusted resampling is required in varispeed mode. It means that
+ // recorded audio samples will be read from the FIFO, resampled to match the
+ // output sample-rate and then stored in |resampled_bus_|.
+ if (VarispeedMode()) {
+ // Calculate a varispeed rate scalar factor to compensate for drift between
+ // input and output. We use the actual number of frames still in the FIFO
+ // compared with the ideal value of |target_fifo_frames_|.
+ int delta = fifo_->frames() - target_fifo_frames_;
+
+ // Average |delta| because it can jitter back/forth quite frequently
+ // by +/- the hardware buffer-size *if* the input and output callbacks are
+ // happening at almost exactly the same time. Also, if the input and output
+ // sample-rates are different then |delta| will jitter quite a bit due to
+ // the rate conversion happening in the varispeed, plus the jittering of
+ // the callbacks. The average value is what's important here.
+ // We use an exponential smoothing filter to reduce the variations.
+ average_delta_ += kAlpha * (delta - average_delta_);
+
+ // Compute a rate compensation which always attracts us back to the
+ // |target_fifo_frames_| over a period of kCorrectionTimeSeconds.
+ double correction_time_frames =
+ kCorrectionTimeSeconds * output_format_.Format.nSamplesPerSec;
+ fifo_rate_compensation_ =
+ (correction_time_frames + average_delta_) / correction_time_frames;
+
+#ifndef NDEBUG
+ fifo_rate_comps_[num_elements_[RATE_COMPENSATION]] =
+ fifo_rate_compensation_;
+ num_elements_[RATE_COMPENSATION]++;
+#endif
+
+ // Adjust for FIFO drift.
+ const double new_ratio = io_sample_rate_ratio_ * fifo_rate_compensation_;
+ resampler_->SetRatio(new_ratio);
+ // Get resampled input audio from FIFO where the size is given by the
+ // output side.
+ resampler_->Resample(resampled_bus_->frames(), resampled_bus_.get());
+ }
+
+ // Derive a new total delay estimate if the capture side has set the
+ // |update_output_delay_| flag.
+ if (update_output_delay_) {
+ // Calculate the estimated render delay, i.e., the time difference
+ // between the time when data is added to the endpoint buffer and
+ // when the data is played out on the actual speaker.
+ const double stream_pos = CurrentStreamPosInMilliseconds(
+ num_written_frames_ + output_buffer_size_frames_,
+ output_format_.Format.nSamplesPerSec);
+ const double speaker_pos =
+ SpeakerStreamPosInMilliseconds(audio_output_clock);
+ const double render_delay_ms = stream_pos - speaker_pos;
+ const double fifo_delay_ms = VarispeedMode() ?
+ FrameCountToMilliseconds(target_fifo_frames_, input_format_) : 0;
+
+ // Derive the total delay, i.e., the sum of the input and output
+ // delays. Also convert the value into byte units. An extra FIFO delay
+ // is added for varispeed usage cases.
+ total_delay_ms_ = VarispeedMode() ?
+ capture_delay_ms_ + render_delay_ms + fifo_delay_ms :
+ capture_delay_ms_ + render_delay_ms;
+ DVLOG(2) << "total_delay_ms : " << total_delay_ms_;
+ DVLOG(3) << " capture_delay_ms: " << capture_delay_ms_;
+ DVLOG(3) << " render_delay_ms : " << render_delay_ms;
+ DVLOG(3) << " fifo_delay_ms : " << fifo_delay_ms;
+ total_delay_bytes_ = MillisecondsToBytes(total_delay_ms_, output_format_);
+
+ // Wait for new signal from the capture side.
+ update_output_delay_ = false;
+ }
+
+ // Select source depending on if varispeed is utilized or not.
+ // Also, the source might be the output of a channel mixer if channel mixing
+ // is required to match the native input channels to the number of input
+ // channels used by the client (given by |input_channels_| in this case).
+ AudioBus* input_bus = VarispeedMode() ?
+ resampled_bus_.get() : input_bus_.get();
+ if (channel_mixer_) {
+ DCHECK_EQ(input_bus->frames(), channel_bus_->frames());
+ // Most common case is 1->2 channel upmixing.
+ channel_mixer_->Transform(input_bus, channel_bus_.get());
+ // Use the output from the channel mixer as new input bus.
+ input_bus = channel_bus_.get();
+ }
+
+ // Prepare for rendering by calling OnMoreIOData().
+ int frames_filled = source_->OnMoreIOData(
+ input_bus,
+ output_bus_.get(),
+ AudioBuffersState(0, total_delay_bytes_));
+ DCHECK_EQ(frames_filled, output_bus_->frames());
+
+ // Keep track of number of rendered frames since we need it for
+ // our delay calculations.
+ num_written_frames_ += frames_filled;
+
+ // Derive the the amount of available space in the endpoint buffer.
+ // Avoid render attempt if there is no room for a captured packet.
+ UINT32 num_queued_frames = 0;
+ audio_output_client_->GetCurrentPadding(&num_queued_frames);
+ if (endpoint_render_buffer_size_frames_ - num_queued_frames <
+ output_buffer_size_frames_)
+ return;
+
+ // Grab all available space in the rendering endpoint buffer
+ // into which the client can write a data packet.
+ uint8* audio_data = NULL;
+ HRESULT hr = audio_render_client_->GetBuffer(output_buffer_size_frames_,
+ &audio_data);
+ if (FAILED(hr)) {
+ DLOG(ERROR) << "Failed to access render buffer";
+ return;
+ }
+
+ const int bytes_per_sample = output_format_.Format.wBitsPerSample >> 3;
+
+ // Convert the audio bus content to interleaved integer data using
+ // |audio_data| as destination.
+ output_bus_->Scale(volume_);
+ output_bus_->ToInterleaved(
+ output_buffer_size_frames_, bytes_per_sample, audio_data);
+
+ // Release the buffer space acquired in the GetBuffer() call.
+ audio_render_client_->ReleaseBuffer(output_buffer_size_frames_, 0);
+ DLOG_IF(ERROR, FAILED(hr)) << "Failed to release render buffer";
+
+ return;
+}
+
+void WASAPIUnifiedStream::HandleError(HRESULT err) {
+ CHECK((started() && GetCurrentThreadId() == audio_io_thread_->tid()) ||
+ (!started() && GetCurrentThreadId() == creating_thread_id_));
+ NOTREACHED() << "Error code: " << std::hex << err;
+ if (source_)
+ source_->OnError(this);
+}
+
+void WASAPIUnifiedStream::StopAndJoinThread(HRESULT err) {
+ CHECK(GetCurrentThreadId() == creating_thread_id_);
+ DCHECK(audio_io_thread_.get());
+ SetEvent(stop_streaming_event_.Get());
+ audio_io_thread_->Join();
+ audio_io_thread_.reset();
+ HandleError(err);
+}
+
+} // namespace media