summaryrefslogtreecommitdiffstats
path: root/mojo/edk/system/data_pipe_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'mojo/edk/system/data_pipe_unittest.cc')
-rw-r--r--mojo/edk/system/data_pipe_unittest.cc1574
1 files changed, 1574 insertions, 0 deletions
diff --git a/mojo/edk/system/data_pipe_unittest.cc b/mojo/edk/system/data_pipe_unittest.cc
new file mode 100644
index 0000000..edf7bcb
--- /dev/null
+++ b/mojo/edk/system/data_pipe_unittest.cc
@@ -0,0 +1,1574 @@
+// Copyright 2015 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdint.h>
+
+#include "base/bind.h"
+#include "base/location.h"
+#include "base/logging.h"
+#include "base/memory/scoped_ptr.h"
+#include "base/message_loop/message_loop.h"
+#include "mojo/edk/embedder/platform_channel_pair.h"
+#include "mojo/edk/embedder/simple_platform_support.h"
+#include "mojo/edk/system/test_utils.h"
+#include "mojo/edk/system/waiter.h"
+#include "mojo/public/c/system/data_pipe.h"
+#include "mojo/public/c/system/functions.h"
+#include "mojo/public/cpp/system/macros.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+namespace mojo {
+namespace edk {
+namespace {
+
+const MojoHandleSignals kSignalAll = MOJO_HANDLE_SIGNAL_READABLE |
+ MOJO_HANDLE_SIGNAL_WRITABLE |
+ MOJO_HANDLE_SIGNAL_PEER_CLOSED;
+const uint32_t kSizeOfOptions =
+ static_cast<uint32_t>(sizeof(MojoCreateDataPipeOptions));
+
+// In various places, we have to poll (since, e.g., we can't yet wait for a
+// certain amount of data to be available). This is the maximum number of
+// iterations (separated by a short sleep).
+// TODO(vtl): Get rid of this.
+const size_t kMaxPoll = 100;
+
+class DataPipeTest : public test::MojoSystemTest {
+ public:
+ DataPipeTest() : producer_(MOJO_HANDLE_INVALID),
+ consumer_(MOJO_HANDLE_INVALID) {}
+
+ ~DataPipeTest() override {
+ if (producer_ != MOJO_HANDLE_INVALID)
+ CHECK_EQ(MOJO_RESULT_OK, MojoClose(producer_));
+ if (consumer_ != MOJO_HANDLE_INVALID)
+ CHECK_EQ(MOJO_RESULT_OK, MojoClose(consumer_));
+ }
+
+ MojoResult Create(const MojoCreateDataPipeOptions* options) {
+ return MojoCreateDataPipe(options, &producer_, &consumer_);
+ }
+
+ MojoResult WriteData(const void* elements,
+ uint32_t* num_bytes,
+ bool all_or_none = false) {
+ return MojoWriteData(producer_, elements, num_bytes,
+ all_or_none ? MOJO_READ_DATA_FLAG_ALL_OR_NONE :
+ MOJO_WRITE_DATA_FLAG_NONE);
+ }
+
+ MojoResult ReadData(void* elements,
+ uint32_t* num_bytes,
+ bool all_or_none = false,
+ bool peek = false) {
+ MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE;
+ if (all_or_none)
+ flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
+ if (peek)
+ flags |= MOJO_READ_DATA_FLAG_PEEK;
+ return MojoReadData(consumer_, elements, num_bytes, flags);
+ }
+
+ MojoResult QueryData(uint32_t* num_bytes) {
+ return MojoReadData(consumer_, nullptr, num_bytes,
+ MOJO_READ_DATA_FLAG_QUERY);
+ }
+
+ MojoResult DiscardData(uint32_t* num_bytes, bool all_or_none = false) {
+ MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_DISCARD;
+ if (all_or_none)
+ flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
+ return MojoReadData(consumer_, nullptr, num_bytes, flags);
+ }
+
+ MojoResult BeginReadData(const void** elements,
+ uint32_t* num_bytes,
+ bool all_or_none = false) {
+ MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE;
+ if (all_or_none)
+ flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
+ return MojoBeginReadData(consumer_, elements, num_bytes, flags);
+ }
+
+ MojoResult EndReadData(uint32_t num_bytes_read) {
+ return MojoEndReadData(consumer_, num_bytes_read);
+ }
+
+ MojoResult BeginWriteData(void** elements,
+ uint32_t* num_bytes,
+ bool all_or_none = false) {
+ MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE;
+ if (all_or_none)
+ flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
+ return MojoBeginWriteData(producer_, elements, num_bytes, flags);
+ }
+
+ MojoResult EndWriteData(uint32_t num_bytes_written) {
+ return MojoEndWriteData(producer_, num_bytes_written);
+ }
+
+ MojoResult CloseProducer() {
+ MojoResult rv = MojoClose(producer_);
+ producer_ = MOJO_HANDLE_INVALID;
+ return rv;
+ }
+
+ MojoResult CloseConsumer() {
+ MojoResult rv = MojoClose(consumer_);
+ consumer_ = MOJO_HANDLE_INVALID;
+ return rv;
+ }
+
+ MojoHandle producer_, consumer_;
+
+ private:
+ MOJO_DISALLOW_COPY_AND_ASSIGN(DataPipeTest);
+};
+
+TEST_F(DataPipeTest, Basic) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 1000 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+
+ // We can write to a data pipe handle immediately.
+ int32_t elements[10] = {};
+ uint32_t num_bytes = 0;
+
+ num_bytes =
+ static_cast<uint32_t>(MOJO_ARRAYSIZE(elements) * sizeof(elements[0]));
+
+ elements[0] = 123;
+ elements[1] = 456;
+ num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(&elements[0], &num_bytes));
+
+ // Now wait for the other side to become readable.
+ MojoHandleSignalsState state;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &state));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, state.satisfied_signals);
+
+ elements[0] = -1;
+ elements[1] = -1;
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(&elements[0], &num_bytes));
+ ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(elements[0], 123);
+ ASSERT_EQ(elements[1], 456);
+}
+
+// Tests creation of data pipes with various (valid) options.
+TEST_F(DataPipeTest, CreateAndMaybeTransfer) {
+ MojoCreateDataPipeOptions test_options[] = {
+ // Default options.
+ {},
+ // Trivial element size, non-default capacity.
+ {kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1, // |element_num_bytes|.
+ 1000}, // |capacity_num_bytes|.
+ // Nontrivial element size, non-default capacity.
+ {kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 4, // |element_num_bytes|.
+ 4000}, // |capacity_num_bytes|.
+ // Nontrivial element size, default capacity.
+ {kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 100, // |element_num_bytes|.
+ 0} // |capacity_num_bytes|.
+ };
+ for (size_t i = 0; i < arraysize(test_options); i++) {
+ MojoHandle producer_handle, consumer_handle;
+ MojoCreateDataPipeOptions* options =
+ i ? &test_options[i] : nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoCreateDataPipe(options, &producer_handle, &consumer_handle));
+ ASSERT_EQ(MOJO_RESULT_OK, MojoClose(producer_handle));
+ ASSERT_EQ(MOJO_RESULT_OK, MojoClose(consumer_handle));
+ }
+}
+
+TEST_F(DataPipeTest, SimpleReadWrite) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 1000 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ int32_t elements[10] = {};
+ uint32_t num_bytes = 0;
+
+ // Try reading; nothing there yet.
+ num_bytes =
+ static_cast<uint32_t>(MOJO_ARRAYSIZE(elements) * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadData(elements, &num_bytes));
+
+ // Query; nothing there yet.
+ num_bytes = 0;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Discard; nothing there yet.
+ num_bytes = static_cast<uint32_t>(5u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, DiscardData(&num_bytes));
+
+ // Read with invalid |num_bytes|.
+ num_bytes = sizeof(elements[0]) + 1;
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, ReadData(elements, &num_bytes));
+
+ // Write two elements.
+ elements[0] = 123;
+ elements[1] = 456;
+ num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes));
+ // It should have written everything (even without "all or none").
+ ASSERT_EQ(2u * sizeof(elements[0]), num_bytes);
+
+ // Wait.
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Query.
+ // TODO(vtl): It's theoretically possible (though not with the current
+ // implementation/configured limits) that not all the data has arrived yet.
+ // (The theoretically-correct assertion here is that |num_bytes| is |1 * ...|
+ // or |2 * ...|.)
+ num_bytes = 0;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(2 * sizeof(elements[0]), num_bytes);
+
+ // Read one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes));
+ ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
+ ASSERT_EQ(123, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Query.
+ // TODO(vtl): See previous TODO. (If we got 2 elements there, however, we
+ // should get 1 here.)
+ num_bytes = 0;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1 * sizeof(elements[0]), num_bytes);
+
+ // Peek one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, true));
+ ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
+ ASSERT_EQ(456, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Query. Still has 1 element remaining.
+ num_bytes = 0;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1 * sizeof(elements[0]), num_bytes);
+
+ // Try to read two elements, with "all or none".
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
+ ReadData(elements, &num_bytes, true, false));
+ ASSERT_EQ(-1, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Try to read two elements, without "all or none".
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, false));
+ ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
+ ASSERT_EQ(456, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Query.
+ num_bytes = 0;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+}
+
+// Note: The "basic" waiting tests test that the "wait states" are correct in
+// various situations; they don't test that waiters are properly awoken on state
+// changes. (For that, we need to use multiple threads.)
+TEST_F(DataPipeTest, BasicProducerWaiting) {
+ // Note: We take advantage of the fact that current for current
+ // implementations capacities are strict maximums. This is not guaranteed by
+ // the API.
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 2 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ Create(&options);
+ MojoHandleSignalsState hss;
+
+ // Never readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Already writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+
+ // Write two elements.
+ int32_t elements[2] = {123, 456};
+ uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
+ ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
+
+ // Wait for data to become available to the consumer.
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Peek one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(123, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Read one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, false));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(123, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Try writing, using a two-phase write.
+ void* buffer = nullptr;
+ num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes));
+ EXPECT_TRUE(buffer);
+ ASSERT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(elements[0])));
+
+ static_cast<int32_t*>(buffer)[0] = 789;
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(static_cast<uint32_t>(
+ 1u * sizeof(elements[0]))));
+
+ // Read one element, using a two-phase read.
+ const void* read_buffer = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ BeginReadData(&read_buffer, &num_bytes, false));
+ EXPECT_TRUE(read_buffer);
+ // Since we only read one element (after having written three in all), the
+ // two-phase read should only allow us to read one. This checks an
+ // implementation detail!
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(456, static_cast<const int32_t*>(read_buffer)[0]);
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(static_cast<uint32_t>(
+ 1u * sizeof(elements[0]))));
+
+ // Write one element.
+ elements[0] = 123;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+
+ // Close the consumer.
+ CloseConsumer();
+
+ // It should now be never-writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+}
+
+TEST_F(DataPipeTest, PeerClosedProducerWaiting) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 2 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Close the consumer.
+ CloseConsumer();
+
+ // It should be signaled.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+}
+
+TEST_F(DataPipeTest, PeerClosedConsumerWaiting) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 2 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Close the producer.
+ CloseProducer();
+
+ // It should be signaled.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+}
+
+TEST_F(DataPipeTest, BasicConsumerWaiting) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 1000 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Never writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_WRITABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(0u, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Write two elements.
+ int32_t elements[2] = {123, 456};
+ uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
+
+ // Wait for readability.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Discard one element.
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+
+ // Should still be readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Peek one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true));
+ ASSERT_EQ(456, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Should still be readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Read one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(456, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Write one element.
+ elements[0] = 789;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
+
+ // Waiting should now succeed.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Close the producer.
+ CloseProducer();
+
+ // Should still be readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Wait for the peer closed signal.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_TRUE((hss.satisfied_signals & MOJO_HANDLE_SIGNAL_PEER_CLOSED) != 0);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Read one element.
+ elements[0] = -1;
+ elements[1] = -1;
+ num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true));
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ ASSERT_EQ(789, elements[0]);
+ ASSERT_EQ(-1, elements[1]);
+
+ // Should be never-readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+}
+
+// Test with two-phase APIs and also closing the producer with an active
+// consumer waiter.
+TEST_F(DataPipeTest, ConsumerWaitingTwoPhase) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 1000 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Write two elements.
+ int32_t* elements = nullptr;
+ void* buffer = nullptr;
+ // Request room for three (but we'll only write two).
+ uint32_t num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes, true));
+ EXPECT_TRUE(buffer);
+ EXPECT_GE(num_bytes, static_cast<uint32_t>(3u * sizeof(elements[0])));
+ elements = static_cast<int32_t*>(buffer);
+ elements[0] = 123;
+ elements[1] = 456;
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(2u * sizeof(elements[0])));
+
+ // Wait for readability.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Read one element.
+ // Request two in all-or-none mode, but only read one.
+ const void* read_buffer = nullptr;
+ num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes, true));
+ EXPECT_TRUE(read_buffer);
+ ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
+ const int32_t* read_elements = static_cast<const int32_t*>(read_buffer);
+ ASSERT_EQ(123, read_elements[0]);
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0])));
+
+ // Should still be readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Read one element.
+ // Request three, but not in all-or-none mode.
+ read_buffer = nullptr;
+ num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
+ EXPECT_TRUE(read_buffer);
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
+ read_elements = static_cast<const int32_t*>(read_buffer);
+ ASSERT_EQ(456, read_elements[0]);
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0])));
+
+ // Close the producer.
+ CloseProducer();
+
+ // Should be never-readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+}
+
+// Tests that data pipes aren't writable/readable during two-phase writes/reads.
+TEST_F(DataPipeTest, BasicTwoPhaseWaiting) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 1000 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // It should be writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ uint32_t num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
+ void* write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
+ EXPECT_TRUE(write_ptr);
+ EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
+
+ // At this point, it shouldn't be writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+ ASSERT_EQ(0u, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // It shouldn't be readable yet either (we'll wait later).
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss));
+ ASSERT_EQ(0u, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ static_cast<int32_t*>(write_ptr)[0] = 123;
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(1u * sizeof(int32_t)));
+
+ // It should immediately be writable again.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // It should become readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Start another two-phase write and check that it's readable even in the
+ // middle of it.
+ num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
+ write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
+ EXPECT_TRUE(write_ptr);
+ EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
+
+ // It should be readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // End the two-phase write without writing anything.
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(0u));
+
+ // Start a two-phase read.
+ num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
+ const void* read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
+ EXPECT_TRUE(read_ptr);
+ ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(int32_t)), num_bytes);
+
+ // At this point, it should still be writable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // But not readable.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss));
+ ASSERT_EQ(0u, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // End the two-phase read without reading anything.
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(0u));
+
+ // It should be readable again.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE, 0, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+}
+
+void Seq(int32_t start, size_t count, int32_t* out) {
+ for (size_t i = 0; i < count; i++)
+ out[i] = start + static_cast<int32_t>(i);
+}
+
+TEST_F(DataPipeTest, AllOrNone) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 10 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Try writing way too much.
+ uint32_t num_bytes = 20u * sizeof(int32_t);
+ int32_t buffer[100];
+ Seq(0, MOJO_ARRAYSIZE(buffer), buffer);
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true));
+
+ // Should still be empty.
+ num_bytes = ~0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Write some data.
+ num_bytes = 5u * sizeof(int32_t);
+ Seq(100, MOJO_ARRAYSIZE(buffer), buffer);
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
+ ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
+
+ // Wait for data.
+ // TODO(vtl): There's no real guarantee that all the data will become
+ // available at once (except that in current implementations, with reasonable
+ // limits, it will). Eventually, we'll be able to wait for a specified amount
+ // of data to become available.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Half full.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
+
+ /* TODO(jam): enable if we end up observing max capacity
+ // Too much.
+ num_bytes = 6u * sizeof(int32_t);
+ Seq(200, MOJO_ARRAYSIZE(buffer), buffer);
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true));
+ */
+
+ // Try reading too much.
+ num_bytes = 11u * sizeof(int32_t);
+ memset(buffer, 0xab, sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true));
+ int32_t expected_buffer[100];
+ memset(expected_buffer, 0xab, sizeof(expected_buffer));
+ ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
+
+ // Try discarding too much.
+ num_bytes = 11u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true));
+
+ // Just a little.
+ num_bytes = 2u * sizeof(int32_t);
+ Seq(300, MOJO_ARRAYSIZE(buffer), buffer);
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
+ ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
+
+ // Just right.
+ num_bytes = 3u * sizeof(int32_t);
+ Seq(400, MOJO_ARRAYSIZE(buffer), buffer);
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
+ ASSERT_EQ(3u * sizeof(int32_t), num_bytes);
+
+ // TODO(vtl): Hack (see also the TODO above): We can't currently wait for a
+ // specified amount of data to be available, so poll.
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ if (num_bytes >= 10u * sizeof(int32_t))
+ break;
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(10u * sizeof(int32_t), num_bytes);
+
+ // Read half.
+ num_bytes = 5u * sizeof(int32_t);
+ memset(buffer, 0xab, sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true));
+ ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
+ memset(expected_buffer, 0xab, sizeof(expected_buffer));
+ Seq(100, 5, expected_buffer);
+ ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
+
+ // Try reading too much again.
+ num_bytes = 6u * sizeof(int32_t);
+ memset(buffer, 0xab, sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true));
+ memset(expected_buffer, 0xab, sizeof(expected_buffer));
+ ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
+
+ // Try discarding too much again.
+ num_bytes = 6u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true));
+
+ // Discard a little.
+ num_bytes = 2u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
+ ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
+
+ // Three left.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(3u * sizeof(int32_t), num_bytes);
+
+ // Close the producer, then test producer-closed cases.
+ CloseProducer();
+
+ // Wait.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Try reading too much; "failed precondition" since the producer is closed.
+ num_bytes = 4u * sizeof(int32_t);
+ memset(buffer, 0xab, sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ ReadData(buffer, &num_bytes, true));
+ memset(expected_buffer, 0xab, sizeof(expected_buffer));
+ ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
+
+ // Try discarding too much; "failed precondition" again.
+ num_bytes = 4u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes, true));
+
+ // Read a little.
+ num_bytes = 2u * sizeof(int32_t);
+ memset(buffer, 0xab, sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true));
+ ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
+ memset(expected_buffer, 0xab, sizeof(expected_buffer));
+ Seq(400, 2, expected_buffer);
+ ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
+
+ // Discard the remaining element.
+ num_bytes = 1u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+
+ // Empty again.
+ num_bytes = ~0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+}
+
+TEST_F(DataPipeTest, DISABLED_TwoPhaseAllOrNone) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 10 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Try writing way too much (two-phase).
+ uint32_t num_bytes = 20u * sizeof(int32_t);
+ void* write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
+ BeginWriteData(&write_ptr, &num_bytes, true));
+
+ // Try writing an amount which isn't a multiple of the element size
+ // (two-phase).
+ static_assert(sizeof(int32_t) > 1u, "Wow! int32_t's have size 1");
+ num_bytes = 1u;
+ write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
+ BeginWriteData(&write_ptr, &num_bytes, true));
+
+ // Try reading way too much (two-phase).
+ num_bytes = 20u * sizeof(int32_t);
+ const void* read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
+ BeginReadData(&read_ptr, &num_bytes, true));
+
+ // Write half (two-phase).
+ num_bytes = 5u * sizeof(int32_t);
+ write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes, true));
+ // May provide more space than requested.
+ EXPECT_GE(num_bytes, 5u * sizeof(int32_t));
+ EXPECT_TRUE(write_ptr);
+ Seq(0, 5, static_cast<int32_t*>(write_ptr));
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(5u * sizeof(int32_t)));
+
+ // Wait for data.
+ // TODO(vtl): (See corresponding TODO in AllOrNone.)
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Try reading an amount which isn't a multiple of the element size
+ // (two-phase).
+ num_bytes = 1u;
+ read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
+ BeginReadData(&read_ptr, &num_bytes, true));
+
+ // Read one (two-phase).
+ num_bytes = 1u * sizeof(int32_t);
+ read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes, true));
+ EXPECT_GE(num_bytes, 1u * sizeof(int32_t));
+ ASSERT_EQ(0, static_cast<const int32_t*>(read_ptr)[0]);
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(int32_t)));
+
+ // We should have four left, leaving room for six.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(4u * sizeof(int32_t), num_bytes);
+
+ // Assuming a tight circular buffer of the specified capacity, we can't do a
+ // two-phase write of six now.
+ num_bytes = 6u * sizeof(int32_t);
+ write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
+ BeginWriteData(&write_ptr, &num_bytes, true));
+
+ // TODO(vtl): Hack (see also the TODO above): We can't currently wait for a
+ // specified amount of space to be available, so poll.
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ // Write six elements (simple), filling the buffer.
+ num_bytes = 6u * sizeof(int32_t);
+ int32_t buffer[100];
+ Seq(100, 6, buffer);
+ MojoResult result = WriteData(buffer, &num_bytes, true);
+ if (result == MOJO_RESULT_OK)
+ break;
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, result);
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(6u * sizeof(int32_t), num_bytes);
+
+ // TODO(vtl): Hack: poll again.
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ // We have ten.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ if (num_bytes >= 10u * sizeof(int32_t))
+ break;
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(10u * sizeof(int32_t), num_bytes);
+
+ // Note: Whether a two-phase read of ten would fail here or not is
+ // implementation-dependent.
+
+ // Close the producer.
+ CloseProducer();
+
+ // A two-phase read of nine should work.
+ num_bytes = 9u * sizeof(int32_t);
+ read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes, true));
+ EXPECT_GE(num_bytes, 9u * sizeof(int32_t));
+ ASSERT_EQ(1, static_cast<const int32_t*>(read_ptr)[0]);
+ ASSERT_EQ(2, static_cast<const int32_t*>(read_ptr)[1]);
+ ASSERT_EQ(3, static_cast<const int32_t*>(read_ptr)[2]);
+ ASSERT_EQ(4, static_cast<const int32_t*>(read_ptr)[3]);
+ ASSERT_EQ(100, static_cast<const int32_t*>(read_ptr)[4]);
+ ASSERT_EQ(101, static_cast<const int32_t*>(read_ptr)[5]);
+ ASSERT_EQ(102, static_cast<const int32_t*>(read_ptr)[6]);
+ ASSERT_EQ(103, static_cast<const int32_t*>(read_ptr)[7]);
+ ASSERT_EQ(104, static_cast<const int32_t*>(read_ptr)[8]);
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(9u * sizeof(int32_t)));
+
+ // Wait for peer closed.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // A two-phase read of two should fail, with "failed precondition".
+ num_bytes = 2u * sizeof(int32_t);
+ read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ BeginReadData(&read_ptr, &num_bytes, true));
+}
+
+/*
+jam: this is testing that the implementation uses a circular buffer, which we
+don't use currently.
+// Tests that |ProducerWriteData()| and |ConsumerReadData()| writes and reads,
+// respectively, as much as possible, even if it may have to "wrap around" the
+// internal circular buffer. (Note that the two-phase write and read need not do
+// this.)
+TYPED_TEST(DataPipeImplTest, WrapAround) {
+ unsigned char test_data[1000];
+ for (size_t i = 0; i < MOJO_ARRAYSIZE(test_data); i++)
+ test_data[i] = static_cast<unsigned char>(i);
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1u, // |element_num_bytes|.
+ 100u // |capacity_num_bytes|.
+ };
+ MojoCreateDataPipeOptions validated_options = {};
+ // This test won't be valid if |ValidateCreateOptions()| decides to give the
+ // pipe more space.
+ ASSERT_EQ(MOJO_RESULT_OK, DataPipe::ValidateCreateOptions(
+ &options, &validated_options));
+ ASSERT_EQ(100u, validated_options.capacity_num_bytes);
+ this->Create(options);
+ this->DoTransfer();
+
+ Waiter waiter;
+ HandleSignalsState hss;
+
+ // Add waiter.
+ waiter.Init();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ConsumerAddAwakable(&waiter, MOJO_HANDLE_SIGNAL_READABLE, 1,
+ nullptr));
+
+ // Write 20 bytes.
+ uint32_t num_bytes = 20u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ProducerWriteData(&test_data[0], &num_bytes, false));
+ ASSERT_EQ(20u, num_bytes);
+
+ // Wait for data.
+ // TODO(vtl): (See corresponding TODO in AllOrNone.)
+ ASSERT_EQ(MOJO_RESULT_OK, waiter.Wait(test::TinyDeadline(), nullptr));
+ hss = HandleSignalsState();
+ this->ConsumerRemoveAwakable(&waiter, &hss);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Read 10 bytes.
+ unsigned char read_buffer[1000] = {0};
+ num_bytes = 10u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ConsumerReadData(read_buffer, &num_bytes, false, false));
+ ASSERT_EQ(10u, num_bytes);
+ ASSERT_EQ(0, memcmp(read_buffer, &test_data[0], 10u));
+
+ if (this->IsStrictCircularBuffer()) {
+ // Check that a two-phase write can now only write (at most) 80 bytes. (This
+ // checks an implementation detail; this behavior is not guaranteed.)
+ void* write_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes,
+ false));
+ EXPECT_TRUE(write_buffer_ptr);
+ ASSERT_EQ(80u, num_bytes);
+ ASSERT_EQ(MOJO_RESULT_OK, this->ProducerEndWriteData(0u));
+ }
+
+ // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.)
+ size_t total_num_bytes = 0;
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ // Write as much data as we can (using |ProducerWriteData()|). We should
+ // write 90 bytes (eventually).
+ num_bytes = 200u;
+ MojoResult result = this->ProducerWriteData(
+ &test_data[20 + total_num_bytes], &num_bytes, false);
+ if (result == MOJO_RESULT_OK) {
+ total_num_bytes += num_bytes;
+ if (total_num_bytes >= 90u)
+ break;
+ } else {
+ ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, result);
+ }
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(90u, total_num_bytes);
+
+ // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.)
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ // We have 100.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ConsumerQueryData(&num_bytes));
+ if (num_bytes >= 100u)
+ break;
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(100u, num_bytes);
+
+ if (this->IsStrictCircularBuffer()) {
+ // Check that a two-phase read can now only read (at most) 90 bytes. (This
+ // checks an implementation detail; this behavior is not guaranteed.)
+ const void* read_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
+ EXPECT_TRUE(read_buffer_ptr);
+ ASSERT_EQ(90u, num_bytes);
+ ASSERT_EQ(MOJO_RESULT_OK, this->ConsumerEndReadData(0u));
+ }
+
+ // Read as much as possible (using |ConsumerReadData()|). We should read 100
+ // bytes.
+ num_bytes = static_cast<uint32_t>(MOJO_ARRAYSIZE(read_buffer) *
+ sizeof(read_buffer[0]));
+ memset(read_buffer, 0, num_bytes);
+ ASSERT_EQ(MOJO_RESULT_OK,
+ this->ConsumerReadData(read_buffer, &num_bytes, false, false));
+ ASSERT_EQ(100u, num_bytes);
+ ASSERT_EQ(0, memcmp(read_buffer, &test_data[10], 100u));
+
+ this->ProducerClose();
+ this->ConsumerClose();
+}
+*/
+
+// Tests the behavior of writing (simple and two-phase), closing the producer,
+// then reading (simple and two-phase).
+TEST_F(DataPipeTest, WriteCloseProducerRead) {
+ const char kTestData[] = "hello world";
+ const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1u, // |element_num_bytes|.
+ 1000u // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+
+ // Write some data, so we'll have something to read.
+ uint32_t num_bytes = kTestDataSize;
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+
+ // Write it again, so we'll have something left over.
+ num_bytes = kTestDataSize;
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+
+ // Start two-phase write.
+ void* write_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ BeginWriteData(&write_buffer_ptr, &num_bytes, false));
+ EXPECT_TRUE(write_buffer_ptr);
+ EXPECT_GT(num_bytes, 0u);
+
+ // TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.)
+ for (size_t i = 0; i < kMaxPoll; i++) {
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ if (num_bytes >= 2u * kTestDataSize)
+ break;
+
+ test::Sleep(test::EpsilonDeadline());
+ }
+ ASSERT_EQ(2u * kTestDataSize, num_bytes);
+
+ // Start two-phase read.
+ const void* read_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ BeginReadData(&read_buffer_ptr, &num_bytes));
+ EXPECT_TRUE(read_buffer_ptr);
+ ASSERT_EQ(2u * kTestDataSize, num_bytes);
+
+ // Close the producer.
+ CloseProducer();
+
+ // The consumer can finish its two-phase read.
+ ASSERT_EQ(0, memcmp(read_buffer_ptr, kTestData, kTestDataSize));
+ ASSERT_EQ(MOJO_RESULT_OK, EndReadData(kTestDataSize));
+
+ // And start another.
+ read_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK,
+ BeginReadData(&read_buffer_ptr, &num_bytes));
+ EXPECT_TRUE(read_buffer_ptr);
+ ASSERT_EQ(kTestDataSize, num_bytes);
+}
+
+
+// Tests the behavior of interrupting a two-phase read and write by closing the
+// consumer.
+TEST_F(DataPipeTest, TwoPhaseWriteReadCloseConsumer) {
+ const char kTestData[] = "hello world";
+ const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1u, // |element_num_bytes|.
+ 1000u // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Write some data, so we'll have something to read.
+ uint32_t num_bytes = kTestDataSize;
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+
+ // Start two-phase write.
+ void* write_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
+ EXPECT_TRUE(write_buffer_ptr);
+ ASSERT_GT(num_bytes, kTestDataSize);
+
+ // Wait for data.
+ // TODO(vtl): (See corresponding TODO in AllOrNone.)
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Start two-phase read.
+ const void* read_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes));
+ EXPECT_TRUE(read_buffer_ptr);
+ ASSERT_EQ(kTestDataSize, num_bytes);
+
+ // Close the consumer.
+ CloseConsumer();
+
+ // Wait for producer to know that the consumer is closed.
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
+
+ // Actually write some data. (Note: Premature freeing of the buffer would
+ // probably only be detected under ASAN or similar.)
+ memcpy(write_buffer_ptr, kTestData, kTestDataSize);
+ // Note: Even though the consumer has been closed, ending the two-phase
+ // write will report success.
+ ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(kTestDataSize));
+
+ // But trying to write should result in failure.
+ num_bytes = kTestDataSize;
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, WriteData(kTestData, &num_bytes));
+
+ // As will trying to start another two-phase write.
+ write_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ BeginWriteData(&write_buffer_ptr, &num_bytes));
+}
+
+// Tests the behavior of "interrupting" a two-phase write by closing both the
+// producer and the consumer.
+TEST_F(DataPipeTest, TwoPhaseWriteCloseBoth) {
+ const uint32_t kTestDataSize = 15u;
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1u, // |element_num_bytes|.
+ 1000u // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+
+ // Start two-phase write.
+ void* write_buffer_ptr = nullptr;
+ uint32_t num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
+ EXPECT_TRUE(write_buffer_ptr);
+ ASSERT_GT(num_bytes, kTestDataSize);
+}
+
+// Tests the behavior of writing, closing the producer, and then reading (with
+// and without data remaining).
+TEST_F(DataPipeTest, WriteCloseProducerReadNoData) {
+ const char kTestData[] = "hello world";
+ const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
+
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ 1u, // |element_num_bytes|.
+ 1000u // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // Write some data, so we'll have something to read.
+ uint32_t num_bytes = kTestDataSize;
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+
+ // Close the producer.
+ CloseProducer();
+
+ // Wait. (Note that once the consumer knows that the producer is closed, it
+ // must also know about all the data that was sent.)
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // Peek that data.
+ char buffer[1000];
+ num_bytes = static_cast<uint32_t>(sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, false, true));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+ ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize));
+
+ // Read that data.
+ memset(buffer, 0, 1000);
+ num_bytes = static_cast<uint32_t>(sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes));
+ ASSERT_EQ(kTestDataSize, num_bytes);
+ ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize));
+
+ // A second read should fail.
+ num_bytes = static_cast<uint32_t>(sizeof(buffer));
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, ReadData(buffer, &num_bytes));
+
+ // A two-phase read should also fail.
+ const void* read_buffer_ptr = nullptr;
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ ReadData(&read_buffer_ptr, &num_bytes));
+
+ // Ditto for discard.
+ num_bytes = 10u;
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes));
+}
+
+// Test that two-phase reads/writes behave correctly when given invalid
+// arguments.
+TEST_F(DataPipeTest, TwoPhaseMoreInvalidArguments) {
+ const MojoCreateDataPipeOptions options = {
+ kSizeOfOptions, // |struct_size|.
+ MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
+ static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
+ 10 * sizeof(int32_t) // |capacity_num_bytes|.
+ };
+ ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
+ MojoHandleSignalsState hss;
+
+ // No data.
+ uint32_t num_bytes = 1000u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Try "ending" a two-phase write when one isn't active.
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
+ EndWriteData(1u * sizeof(int32_t)));
+
+ // Wait a bit, to make sure that if a signal were (incorrectly) sent, it'd
+ // have time to propagate.
+ test::Sleep(test::EpsilonDeadline());
+
+ // Still no data.
+ num_bytes = 1000u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Try ending a two-phase write with an invalid amount (too much).
+ num_bytes = 0u;
+ void* write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
+ EndWriteData(num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
+
+ // But the two-phase write still ended.
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u));
+
+ // Wait a bit (as above).
+ test::Sleep(test::EpsilonDeadline());
+
+ // Still no data.
+ num_bytes = 1000u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Try ending a two-phase write with an invalid amount (not a multiple of the
+ // element size).
+ num_bytes = 0u;
+ write_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
+ EXPECT_GE(num_bytes, 1u);
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndWriteData(1u));
+
+ // But the two-phase write still ended.
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u));
+
+ // Wait a bit (as above).
+ test::Sleep(test::EpsilonDeadline());
+
+ // Still no data.
+ num_bytes = 1000u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(0u, num_bytes);
+
+ // Now write some data, so we'll be able to try reading.
+ int32_t element = 123;
+ num_bytes = 1u * sizeof(int32_t);
+ ASSERT_EQ(MOJO_RESULT_OK, WriteData(&element, &num_bytes));
+
+ // Wait for data.
+ // TODO(vtl): (See corresponding TODO in AllOrNone.)
+ hss = MojoHandleSignalsState();
+ ASSERT_EQ(MOJO_RESULT_OK,
+ MojoWait(consumer_, MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_DEADLINE_INDEFINITE, &hss));
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
+ ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
+ hss.satisfiable_signals);
+
+ // One element available.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+
+ // Try "ending" a two-phase read when one isn't active.
+ ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndReadData(1u * sizeof(int32_t)));
+
+ // Still one element available.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+
+ // Try ending a two-phase read with an invalid amount (too much).
+ num_bytes = 0u;
+ const void* read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
+ EndReadData(num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
+
+ // Still one element available.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+
+ // Try ending a two-phase read with an invalid amount (not a multiple of the
+ // element size).
+ num_bytes = 0u;
+ read_ptr = nullptr;
+ ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+ ASSERT_EQ(123, static_cast<const int32_t*>(read_ptr)[0]);
+ ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndReadData(1u));
+
+ // Still one element available.
+ num_bytes = 0u;
+ ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
+ ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
+}
+
+} // namespace
+} // namespace edk
+} // namespace mojo