diff options
Diffstat (limited to 'third_party/libwebp/enc/quant.c')
-rw-r--r-- | third_party/libwebp/enc/quant.c | 180 |
1 files changed, 150 insertions, 30 deletions
diff --git a/third_party/libwebp/enc/quant.c b/third_party/libwebp/enc/quant.c index ea15384..dcfd4d16 100644 --- a/third_party/libwebp/enc/quant.c +++ b/third_party/libwebp/enc/quant.c @@ -27,6 +27,8 @@ #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP // power-law modulation. Must be strictly less than 1. +#define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision + #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) #if defined(__cplusplus) || defined(c_plusplus) @@ -224,28 +226,90 @@ static void SetupFilterStrength(VP8Encoder* const enc) { // We want to emulate jpeg-like behaviour where the expected "good" quality // is around q=75. Internally, our "good" middle is around c=50. So we // map accordingly using linear piece-wise function -static double QualityToCompression(double q) { - const double c = q / 100.; - return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; +static double QualityToCompression(double c) { + const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; + // The file size roughly scales as pow(quantizer, 3.). Actually, the + // exponent is somewhere between 2.8 and 3.2, but we're mostly interested + // in the mid-quant range. So we scale the compressibility inversely to + // this power-law: quant ~= compression ^ 1/3. This law holds well for + // low quant. Finer modelling for high-quant would make use of kAcTable[] + // more explicitly. + const double v = pow(linear_c, 1 / 3.); + return v; +} + +static double QualityToJPEGCompression(double c, double alpha) { + // We map the complexity 'alpha' and quality setting 'c' to a compression + // exponent empirically matched to the compression curve of libjpeg6b. + // On average, the WebP output size will be roughly similar to that of a + // JPEG file compressed with same quality factor. + const double amin = 0.30; + const double amax = 0.85; + const double exp_min = 0.4; + const double exp_max = 0.9; + const double slope = (exp_min - exp_max) / (amax - amin); + // Linearly interpolate 'expn' from exp_min to exp_max + // in the [amin, amax] range. + const double expn = (alpha > amax) ? exp_min + : (alpha < amin) ? exp_max + : exp_max + slope * (alpha - amin); + const double v = pow(c, expn); + return v; +} + +static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, + const VP8SegmentInfo* const S2) { + return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); +} + +static void SimplifySegments(VP8Encoder* const enc) { + int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; + const int num_segments = enc->segment_hdr_.num_segments_; + int num_final_segments = 1; + int s1, s2; + for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments + const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; + int found = 0; + // check if we already have similar segment + for (s2 = 0; s2 < num_final_segments; ++s2) { + const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; + if (SegmentsAreEquivalent(S1, S2)) { + found = 1; + break; + } + } + map[s1] = s2; + if (!found) { + if (num_final_segments != s1) { + enc->dqm_[num_final_segments] = enc->dqm_[s1]; + } + ++num_final_segments; + } + } + if (num_final_segments < num_segments) { // Remap + int i = enc->mb_w_ * enc->mb_h_; + while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; + enc->segment_hdr_.num_segments_ = num_final_segments; + // Replicate the trailing segment infos (it's mostly cosmetics) + for (i = num_final_segments; i < num_segments; ++i) { + enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; + } + } } void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { int i; int dq_uv_ac, dq_uv_dc; - const int num_segments = enc->config_->segments; + const int num_segments = enc->segment_hdr_.num_segments_; const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; - const double c_base = QualityToCompression(quality); + const double Q = quality / 100.; + const double c_base = enc->config_->emulate_jpeg_size ? + QualityToJPEGCompression(Q, enc->alpha_ / 255.) : + QualityToCompression(Q); for (i = 0; i < num_segments; ++i) { - // The file size roughly scales as pow(quantizer, 3.). Actually, the - // exponent is somewhere between 2.8 and 3.2, but we're mostly interested - // in the mid-quant range. So we scale the compressibility inversely to - // this power-law: quant ~= compression ^ 1/3. This law holds well for - // low quant. Finer modelling for high-quant would make use of kAcTable[] - // more explicitely. - // Additionally, we modulate the base exponent 1/3 to accommodate for the - // quantization susceptibility and allow denser segments to be quantized - // more. - const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.; + // We modulate the base coefficient to accommodate for the quantization + // susceptibility and allow denser segments to be quantized more. + const double expn = 1. - amp * enc->dqm_[i].alpha_; const double c = pow(c_base, expn); const int q = (int)(127. * (1. - c)); assert(expn > 0.); @@ -281,9 +345,11 @@ void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { enc->dq_uv_dc_ = dq_uv_dc; enc->dq_uv_ac_ = dq_uv_ac; - SetupMatrices(enc); - SetupFilterStrength(enc); // initialize segments' filtering, eventually + + if (num_segments > 1) SimplifySegments(enc); + + SetupMatrices(enc); // finalize quantization matrices } //------------------------------------------------------------------------------ @@ -709,7 +775,7 @@ static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { int mode; rd->mode_i16 = -1; - for (mode = 0; mode < 4; ++mode) { + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer int nz; @@ -838,7 +904,7 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { rd->mode_uv = -1; InitScore(&rd_best); - for (mode = 0; mode < 4; ++mode) { + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { VP8ModeScore rd_uv; // Reconstruct @@ -867,10 +933,10 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { const VP8Encoder* const enc = it->enc_; - const int i16 = (it->mb_->type_ == 1); + const int is_i16 = (it->mb_->type_ == 1); int nz = 0; - if (i16) { + if (is_i16) { nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); } else { VP8IteratorStartI4(it); @@ -889,11 +955,66 @@ static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { rd->nz = nz; } +// Refine intra16/intra4 sub-modes based on distortion only (not rate). +static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) { + const int is_i16 = (it->mb_->type_ == 1); + score_t best_score = MAX_COST; + + if (try_both_i4_i16 || is_i16) { + int mode; + int best_mode = -1; + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { + const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; + const uint8_t* const src = it->yuv_in_ + Y_OFF; + const score_t score = VP8SSE16x16(src, ref); + if (score < best_score) { + best_mode = mode; + best_score = score; + } + } + VP8SetIntra16Mode(it, best_mode); + } + if (try_both_i4_i16 || !is_i16) { + uint8_t modes_i4[16]; + // We don't evaluate the rate here, but just account for it through a + // constant penalty (i4 mode usually needs more bits compared to i16). + score_t score_i4 = (score_t)I4_PENALTY; + + VP8IteratorStartI4(it); + do { + int mode; + int best_sub_mode = -1; + score_t best_sub_score = MAX_COST; + const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; + + // TODO(skal): we don't really need the prediction pixels here, + // but just the distortion against 'src'. + VP8MakeIntra4Preds(it); + for (mode = 0; mode < NUM_BMODES; ++mode) { + const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; + const score_t score = VP8SSE4x4(src, ref); + if (score < best_sub_score) { + best_sub_mode = mode; + best_sub_score = score; + } + } + modes_i4[it->i4_] = best_sub_mode; + score_i4 += best_sub_score; + if (score_i4 >= best_score) break; + } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); + if (score_i4 < best_score) { + VP8SetIntra4Mode(it, modes_i4); + } + } +} + //------------------------------------------------------------------------------ // Entry point -int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { +int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, + VP8RDLevel rd_opt) { int is_skipped; + const int method = it->enc_->method_; InitScore(rd); @@ -902,22 +1023,21 @@ int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { VP8MakeLuma16Preds(it); VP8MakeChroma8Preds(it); - // for rd_opt = 2, we perform trellis-quant on the final decision only. - // for rd_opt > 2, we use it for every scoring (=much slower). - if (rd_opt > 0) { - it->do_trellis_ = (rd_opt > 2); + if (rd_opt > RD_OPT_NONE) { + it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); PickBestIntra16(it, rd); - if (it->enc_->method_ >= 2) { + if (method >= 2) { PickBestIntra4(it, rd); } PickBestUV(it, rd); - if (rd_opt == 2) { + if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now it->do_trellis_ = 1; SimpleQuantize(it, rd); } } else { - // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE - it->do_trellis_ = (it->enc_->method_ == 2); + // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower). + // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode). + DistoRefine(it, (method >= 2)); SimpleQuantize(it, rd); } is_skipped = (rd->nz == 0); |