summaryrefslogtreecommitdiffstats
path: root/ui/surface/accelerated_surface_transformer_win.hlsl
diff options
context:
space:
mode:
Diffstat (limited to 'ui/surface/accelerated_surface_transformer_win.hlsl')
-rw-r--r--ui/surface/accelerated_surface_transformer_win.hlsl272
1 files changed, 272 insertions, 0 deletions
diff --git a/ui/surface/accelerated_surface_transformer_win.hlsl b/ui/surface/accelerated_surface_transformer_win.hlsl
index 0bd6fda..aa105ce 100644
--- a/ui/surface/accelerated_surface_transformer_win.hlsl
+++ b/ui/surface/accelerated_surface_transformer_win.hlsl
@@ -13,10 +13,17 @@ struct Vertex {
texture t;
sampler s;
+extern uniform float2 kRenderTargetSize : c0;
+extern uniform float2 kTextureScale : c1;
+
// @gyp_compile(vs_2_0, vsOneTexture)
//
// Passes a position and texture coordinate to the pixel shader.
Vertex vsOneTexture(Vertex input) {
+ // Texture scale is typically just 1 (to do nothing) or -1 (to flip).
+ input.texCoord = ((2 * (input.texCoord - 0.5) * kTextureScale) + 1) / 2;
+ input.position.x += -1 / kRenderTargetSize.x;
+ input.position.y += 1 / kRenderTargetSize.y;
return input;
};
@@ -26,3 +33,268 @@ Vertex vsOneTexture(Vertex input) {
float4 psOneTexture(float2 texCoord : TEXCOORD0) : COLOR0 {
return tex2D(s, texCoord);
};
+
+// Return |value| rounded up to the nearest multiple of |multiple|.
+float alignTo(float value, float multiple) {
+ // |multiple| is usually a compile-time constant; this check allows
+ // the compiler to avoid the fmod when possible.
+ if (multiple == 1)
+ return value;
+
+ // Biasing the value provides numeric stability. We expect |value| to
+ // be an integer; this prevents 4.001 from being rounded up to 8.
+ float biased_value = value - 0.5;
+ return biased_value + multiple - fmod(biased_value, multiple);
+}
+
+float4 packForByteOrder(float4 value) {
+ return value.bgra;
+}
+
+// Adjust the input vertex to address the correct range of texels. This depends
+// on the value of the shader constant |kRenderTargetSize|, as well as an
+// alignment factor |align| that effectively specifies the footprint of the
+// texel samples done by this shader pass, and is used to correct when that
+// footprint size doesn't align perfectly with the actual input size.
+Vertex adjustForAlignmentAndPacking(Vertex vtx, float2 align) {
+ float src_width = kRenderTargetSize.x;
+ float src_height = kRenderTargetSize.y;
+
+ // Because our caller expects to be sampling |align.x| many pixels from src at
+ // a time, if src's width isn't evenly divisible by |align.x|, it is necessary
+ // to pretend that the source is slightly bigger than it is.
+ float bloated_src_width = alignTo(src_width, align.x);
+ float bloated_src_height = alignTo(src_height, align.y);
+
+ // When bloated_src_width != src_width, we'll adjust the texture coordinates
+ // to sample past the edge of the vtx; clamping will produce extra copies of
+ // the last row.
+ float texture_x_scale = bloated_src_width / src_width;
+ float texture_y_scale = bloated_src_height / src_height;
+
+ // Adjust positions so that we're addressing full fragments in the output, per
+ // the top-left filling convention. The shifts would be equivalent to
+ // 1/dst_width and 1/dst_height, if we were to calculate those explicitly.
+ vtx.position.x -= align.x / bloated_src_width;
+ vtx.position.y += align.y / bloated_src_height;
+
+ // Apply the texture scale
+ vtx.texCoord.x *= texture_x_scale;
+ vtx.texCoord.y *= texture_y_scale;
+
+ return vtx;
+}
+
+///////////////////////////////////////////////////////////////////////
+// RGB24 to YV12 in two passes; writing two 8888 targets each pass.
+//
+// YV12 is full-resolution luma and half-resolution blue/red chroma.
+//
+// (original)
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// XRGB XRGB XRGB XRGB XRGB XRGB XRGB XRGB
+// |
+// | (y plane) (temporary)
+// | YYYY YYYY UVUV UVUV
+// +--> { YYYY YYYY + UVUV UVUV }
+// YYYY YYYY UVUV UVUV
+// First YYYY YYYY UVUV UVUV
+// pass YYYY YYYY UVUV UVUV
+// YYYY YYYY UVUV UVUV
+// |
+// | (u plane) (v plane)
+// Second | UUUU VVVV
+// pass +--> { UUUU + VVVV }
+// UUUU VVVV
+//
+///////////////////////////////////////////////////////////////////////
+
+// Phase one of RGB24->YV12 conversion: vsFetch4Pixels/psConvertRGBtoY8UV44
+//
+// @gyp_compile(vs_2_0, vsFetch4Pixels)
+// @gyp_compile(ps_2_0, psConvertRGBtoY8UV44)
+//
+// Writes four source pixels at a time to a full-size Y plane and a half-width
+// interleaved UV plane. After execution, the Y plane is complete but the UV
+// planes still need to be de-interleaved and vertically scaled.
+//
+void vsFetch4Pixels(in Vertex vertex,
+ out float4 position : POSITION,
+ out float2 texCoord0 : TEXCOORD0,
+ out float2 texCoord1 : TEXCOORD1,
+ out float2 texCoord2 : TEXCOORD2,
+ out float2 texCoord3 : TEXCOORD3) {
+ Vertex adjusted = adjustForAlignmentAndPacking(vertex, float2(4, 1));
+
+ // Set up four taps, aligned to texel centers if the src's true size is
+ // |kRenderTargetSize|, and doing bilinear interpolation otherwise.
+ float2 one_texel_x = float2(1 / kRenderTargetSize.x, 0);
+ position = adjusted.position;
+ texCoord0 = adjusted.texCoord - 1.5f * one_texel_x;
+ texCoord1 = adjusted.texCoord - 0.5f * one_texel_x;
+ texCoord2 = adjusted.texCoord + 0.5f * one_texel_x;
+ texCoord3 = adjusted.texCoord + 1.5f * one_texel_x;
+};
+
+struct YV16QuadPixel
+{
+ float4 YYYY : COLOR0;
+ float4 UUVV : COLOR1;
+};
+
+// Color conversion constants.
+static const float3x1 rgb_to_y = float3x1( +0.257f, +0.504f, +0.098f );
+static const float3x1 rgb_to_u = float3x1( -0.148f, -0.291f, +0.439f );
+static const float3x1 rgb_to_v = float3x1( +0.439f, -0.368f, -0.071f );
+static const float y_bias = 0.0625f;
+static const float uv_bias = 0.5f;
+
+YV16QuadPixel psConvertRGBtoY8UV44(float2 texCoord0 : TEXCOORD0,
+ float2 texCoord1 : TEXCOORD1,
+ float2 texCoord2 : TEXCOORD2,
+ float2 texCoord3 : TEXCOORD3) {
+ // Load the four texture samples into a matrix.
+ float4x3 rgb_quad_pixel = float4x3(tex2D(s, texCoord0).rgb,
+ tex2D(s, texCoord1).rgb,
+ tex2D(s, texCoord2).rgb,
+ tex2D(s, texCoord3).rgb);
+
+ // RGB -> Y conversion (x4).
+ float4 yyyy = mul(rgb_quad_pixel, rgb_to_y) + y_bias;
+
+ // Average adjacent texture samples while converting RGB->UV. This is the same
+ // as color converting then averaging, but slightly less math. These values
+ // will be in the range [-0.439f, +0.439f] and still need to have the bias
+ // term applied.
+ float2x3 rgb_double_pixel = float2x3(rgb_quad_pixel[0] + rgb_quad_pixel[1],
+ rgb_quad_pixel[2] + rgb_quad_pixel[3]);
+ float2 uu = mul(rgb_double_pixel, rgb_to_u / 2);
+ float2 vv = mul(rgb_double_pixel, rgb_to_v / 2);
+
+ // Package the result to account for BGRA byte ordering.
+ YV16QuadPixel result;
+ result.YYYY = packForByteOrder(yyyy);
+ result.UUVV.xyzw = float4(uu, vv) + uv_bias; // Apply uv bias.
+ return result;
+};
+
+// Phase two of RGB24->YV12 conversion: vsFetch2Pixels/psConvertUV44toU2V2
+//
+// @gyp_compile(vs_2_0, vsFetch2Pixels)
+// @gyp_compile(ps_2_0, psConvertUV44toU2V2)
+//
+// Deals with UV only. Input is interleaved UV pixels, already scaled
+// horizontally, packed two per RGBA texel. Output is two color planes U and V,
+// packed four to a RGBA pixel.
+//
+// Vertical scaling happens via a half-texel offset and bilinear interpolation
+// during texture sampling.
+void vsFetch2Pixels(in Vertex vertex,
+ out float4 position : POSITION,
+ out float2 texCoord0 : TEXCOORD0,
+ out float2 texCoord1 : TEXCOORD1) {
+ // We fetch two texels in the horizontal direction, and scale by 2 in the
+ // vertical direction.
+ Vertex adjusted = adjustForAlignmentAndPacking(vertex, float2(2, 2));
+
+ // Setup the two texture coordinates. No need to adjust texCoord.y; it's
+ // already at the mid-way point between the two rows. Horizontally, we'll
+ // fetch two texels so that we have enough data to fill our output.
+ float2 one_texel_x = float2(1 / kRenderTargetSize.x, 0);
+ position = adjusted.position;
+ texCoord0 = adjusted.texCoord - 0.5f * one_texel_x;
+ texCoord1 = adjusted.texCoord + 0.5f * one_texel_x;
+};
+
+struct UV8QuadPixel {
+ float4 UUUU : COLOR0;
+ float4 VVVV : COLOR1;
+};
+
+UV8QuadPixel psConvertUV44toU2V2(float2 texCoord0 : TEXCOORD0,
+ float2 texCoord1 : TEXCOORD1) {
+ // We're just sampling two pixels and unswizzling them. There's no need to do
+ // vertical scaling with math, since bilinear interpolation in the sampler
+ // takes care of that.
+ float4 lo_uuvv = tex2D(s, texCoord0);
+ float4 hi_uuvv = tex2D(s, texCoord1);
+ UV8QuadPixel result;
+ result.UUUU = packForByteOrder(float4(lo_uuvv.xy, hi_uuvv.xy));
+ result.VVVV = packForByteOrder(float4(lo_uuvv.zw, hi_uuvv.zw));
+ return result;
+};
+
+
+///////////////////////////////////////////////////////////////////////
+// RGB24 to YV12 in three passes, without MRT: one pass per output color plane.
+// vsFetch4Pixels is the common vertex shader for all three passes.
+//
+// Note that this technique will not do full bilinear filtering on its RGB
+// input (you'd get correctly filtered Y, but aliasing in U and V).
+//
+// Pass 1: vsFetch4Pixels + psConvertRGBToY
+// Pass 2: vsFetch4Pixels_Scale2 + psConvertRGBToU
+// Pass 3: vsFetch4Pixels_Scale2 + psConvertRGBToV
+//
+// @gyp_compile(vs_2_0, vsFetch4Pixels_Scale2)
+// @gyp_compile(ps_2_0, psConvertRGBtoY)
+// @gyp_compile(ps_2_0, psConvertRGBtoU)
+// @gyp_compile(ps_2_0, psConvertRGBtoV)
+//
+///////////////////////////////////////////////////////////////////////
+void vsFetch4Pixels_Scale2(in Vertex vertex,
+ out float4 position : POSITION,
+ out float2 texCoord0 : TEXCOORD0,
+ out float2 texCoord1 : TEXCOORD1,
+ out float2 texCoord2 : TEXCOORD2,
+ out float2 texCoord3 : TEXCOORD3) {
+ Vertex adjusted = adjustForAlignmentAndPacking(vertex, float2(8, 2));
+
+ // Set up four taps, each of which samples a 2x2 texel quad at the midpoint.
+ float2 one_texel_x = float2(1 / kRenderTargetSize.x, 0);
+ position = adjusted.position;
+ texCoord0 = adjusted.texCoord - 3 * one_texel_x;
+ texCoord1 = adjusted.texCoord - 1 * one_texel_x;
+ texCoord2 = adjusted.texCoord + 1 * one_texel_x;
+ texCoord3 = adjusted.texCoord + 3 * one_texel_x;
+};
+
+// RGB -> Y, four samples at a time.
+float4 psConvertRGBtoY(float2 texCoord0 : TEXCOORD0,
+ float2 texCoord1 : TEXCOORD1,
+ float2 texCoord2 : TEXCOORD2,
+ float2 texCoord3 : TEXCOORD3) : COLOR0 {
+ float4x3 rgb_quad_pixel = float4x3(tex2D(s, texCoord0).rgb,
+ tex2D(s, texCoord1).rgb,
+ tex2D(s, texCoord2).rgb,
+ tex2D(s, texCoord3).rgb);
+ return packForByteOrder(mul(rgb_quad_pixel, rgb_to_y) + y_bias);
+}
+
+// RGB -> U, four samples at a time.
+float4 psConvertRGBtoU(float2 texCoord0 : TEXCOORD0,
+ float2 texCoord1 : TEXCOORD1,
+ float2 texCoord2 : TEXCOORD2,
+ float2 texCoord3 : TEXCOORD3) : COLOR0 {
+ float4x3 rgb_quad_pixel = float4x3(tex2D(s, texCoord0).rgb,
+ tex2D(s, texCoord1).rgb,
+ tex2D(s, texCoord2).rgb,
+ tex2D(s, texCoord3).rgb);
+ return packForByteOrder(mul(rgb_quad_pixel, rgb_to_u) + uv_bias);
+}
+
+// RGB -> V, four samples at a time.
+float4 psConvertRGBtoV(float2 texCoord0 : TEXCOORD0,
+ float2 texCoord1 : TEXCOORD1,
+ float2 texCoord2 : TEXCOORD2,
+ float2 texCoord3 : TEXCOORD3) : COLOR0 {
+ float4x3 rgb_quad_pixel = float4x3(tex2D(s, texCoord0).rgb,
+ tex2D(s, texCoord1).rgb,
+ tex2D(s, texCoord2).rgb,
+ tex2D(s, texCoord3).rgb);
+ return packForByteOrder(mul(rgb_quad_pixel, rgb_to_v) + uv_bias);
+}