1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_BASICTYPES_H_
#define BASE_BASICTYPES_H_
#include <limits.h> // So we can set the bounds of our types
#include <stddef.h> // For size_t
#include <string.h> // for memcpy
#include "base/port.h" // Types that only need exist on certain systems
#ifndef COMPILER_MSVC
// stdint.h is part of C99 but MSVC doesn't have it.
#include <stdint.h> // For intptr_t.
#endif
typedef signed char schar;
typedef signed char int8;
typedef short int16;
typedef int int32;
// The NSPR system headers define 64-bit as |long| when possible, except on
// Mac OS X. In order to not have typedef mismatches, we do the same on LP64.
//
// On Mac OS X, |long long| is used for 64-bit types for compatibility with
// <inttypes.h> format macros even in the LP64 model.
#if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
typedef long int64;
#else
typedef long long int64;
#endif
// NOTE: It is DANGEROUS to compare signed with unsigned types in loop
// conditions and other conditional expressions, and it is DANGEROUS to
// compute object/allocation sizes, indices, and offsets with signed types.
// Integer overflow behavior for signed types is UNDEFINED in the C/C++
// standards, but is defined for unsigned types.
//
// Use the unsigned types if your variable represents a bit pattern (e.g. a
// hash value), object or allocation size, object count, offset,
// array/vector index, etc.
//
// Do NOT use 'unsigned' to express "this value should always be positive";
// use assertions for this.
//
// See the Chromium style guide for more information.
// https://sites.google.com/a/chromium.org/dev/developers/coding-style
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
// See the comment above about NSPR and 64-bit.
#if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
typedef unsigned long uint64;
#else
typedef unsigned long long uint64;
#endif
// A type to represent a Unicode code-point value. As of Unicode 4.0,
// such values require up to 21 bits.
// (For type-checking on pointers, make this explicitly signed,
// and it should always be the signed version of whatever int32 is.)
typedef signed int char32;
const uint8 kuint8max = (( uint8) 0xFF);
const uint16 kuint16max = ((uint16) 0xFFFF);
const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF));
const int8 kint8min = (( int8) 0x80);
const int8 kint8max = (( int8) 0x7F);
const int16 kint16min = (( int16) 0x8000);
const int16 kint16max = (( int16) 0x7FFF);
const int32 kint32min = (( int32) 0x80000000);
const int32 kint32max = (( int32) 0x7FFFFFFF);
const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000));
const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF));
// Put this in the private: declarations for a class to be uncopyable.
#define DISALLOW_COPY(TypeName) \
TypeName(const TypeName&)
// Put this in the private: declarations for a class to be unassignable.
#define DISALLOW_ASSIGN(TypeName) \
void operator=(const TypeName&)
// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
// An older, deprecated, politically incorrect name for the above.
// NOTE: The usage of this macro was baned from our code base, but some
// third_party libraries are yet using it.
// TODO(tfarina): Figure out how to fix the usage of this macro in the
// third_party libraries and get rid of it.
#define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
DISALLOW_COPY_AND_ASSIGN(TypeName)
// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example. If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
//
// One caveat is that arraysize() doesn't accept any array of an
// anonymous type or a type defined inside a function. In these rare
// cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
// due to a limitation in C++'s template system. The limitation might
// eventually be removed, but it hasn't happened yet.
// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];
// That gcc wants both of these prototypes seems mysterious. VC, for
// its part, can't decide which to use (another mystery). Matching of
// template overloads: the final frontier.
#ifndef _MSC_VER
template <typename T, size_t N>
char (&ArraySizeHelper(const T (&array)[N]))[N];
#endif
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
// ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
// but can be used on anonymous types or types defined inside
// functions. It's less safe than arraysize as it accepts some
// (although not all) pointers. Therefore, you should use arraysize
// whenever possible.
//
// The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
// size_t.
//
// ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error
//
// "warning: division by zero in ..."
//
// when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
// You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
//
// The following comments are on the implementation details, and can
// be ignored by the users.
//
// ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
// the array) and sizeof(*(arr)) (the # of bytes in one array
// element). If the former is divisible by the latter, perhaps arr is
// indeed an array, in which case the division result is the # of
// elements in the array. Otherwise, arr cannot possibly be an array,
// and we generate a compiler error to prevent the code from
// compiling.
//
// Since the size of bool is implementation-defined, we need to cast
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
// result has type size_t.
//
// This macro is not perfect as it wrongfully accepts certain
// pointers, namely where the pointer size is divisible by the pointee
// size. Since all our code has to go through a 32-bit compiler,
// where a pointer is 4 bytes, this means all pointers to a type whose
// size is 3 or greater than 4 will be (righteously) rejected.
#define ARRAYSIZE_UNSAFE(a) \
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
// Use implicit_cast as a safe version of static_cast or const_cast
// for upcasting in the type hierarchy (i.e. casting a pointer to Foo
// to a pointer to SuperclassOfFoo or casting a pointer to Foo to
// a const pointer to Foo).
// When you use implicit_cast, the compiler checks that the cast is safe.
// Such explicit implicit_casts are necessary in surprisingly many
// situations where C++ demands an exact type match instead of an
// argument type convertable to a target type.
//
// The From type can be inferred, so the preferred syntax for using
// implicit_cast is the same as for static_cast etc.:
//
// implicit_cast<ToType>(expr)
//
// implicit_cast would have been part of the C++ standard library,
// but the proposal was submitted too late. It will probably make
// its way into the language in the future.
template<typename To, typename From>
inline To implicit_cast(From const &f) {
return f;
}
// The COMPILE_ASSERT macro can be used to verify that a compile time
// expression is true. For example, you could use it to verify the
// size of a static array:
//
// COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
// content_type_names_incorrect_size);
//
// or to make sure a struct is smaller than a certain size:
//
// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
//
// The second argument to the macro is the name of the variable. If
// the expression is false, most compilers will issue a warning/error
// containing the name of the variable.
template <bool>
struct CompileAssert {
};
#undef COMPILE_ASSERT
#define COMPILE_ASSERT(expr, msg) \
typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
// Implementation details of COMPILE_ASSERT:
//
// - COMPILE_ASSERT works by defining an array type that has -1
// elements (and thus is invalid) when the expression is false.
//
// - The simpler definition
//
// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
//
// does not work, as gcc supports variable-length arrays whose sizes
// are determined at run-time (this is gcc's extension and not part
// of the C++ standard). As a result, gcc fails to reject the
// following code with the simple definition:
//
// int foo;
// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
// // not a compile-time constant.
//
// - By using the type CompileAssert<(bool(expr))>, we ensures that
// expr is a compile-time constant. (Template arguments must be
// determined at compile-time.)
//
// - The outer parentheses in CompileAssert<(bool(expr))> are necessary
// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
//
// CompileAssert<bool(expr)>
//
// instead, these compilers will refuse to compile
//
// COMPILE_ASSERT(5 > 0, some_message);
//
// (They seem to think the ">" in "5 > 0" marks the end of the
// template argument list.)
//
// - The array size is (bool(expr) ? 1 : -1), instead of simply
//
// ((expr) ? 1 : -1).
//
// This is to avoid running into a bug in MS VC 7.1, which
// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
// bit_cast<Dest,Source> is a template function that implements the
// equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in
// very low-level functions like the protobuf library and fast math
// support.
//
// float f = 3.14159265358979;
// int i = bit_cast<int32>(f);
// // i = 0x40490fdb
//
// The classical address-casting method is:
//
// // WRONG
// float f = 3.14159265358979; // WRONG
// int i = * reinterpret_cast<int*>(&f); // WRONG
//
// The address-casting method actually produces undefined behavior
// according to ISO C++ specification section 3.10 -15 -. Roughly, this
// section says: if an object in memory has one type, and a program
// accesses it with a different type, then the result is undefined
// behavior for most values of "different type".
//
// This is true for any cast syntax, either *(int*)&f or
// *reinterpret_cast<int*>(&f). And it is particularly true for
// conversions betweeen integral lvalues and floating-point lvalues.
//
// The purpose of 3.10 -15- is to allow optimizing compilers to assume
// that expressions with different types refer to different memory. gcc
// 4.0.1 has an optimizer that takes advantage of this. So a
// non-conforming program quietly produces wildly incorrect output.
//
// The problem is not the use of reinterpret_cast. The problem is type
// punning: holding an object in memory of one type and reading its bits
// back using a different type.
//
// The C++ standard is more subtle and complex than this, but that
// is the basic idea.
//
// Anyways ...
//
// bit_cast<> calls memcpy() which is blessed by the standard,
// especially by the example in section 3.9 . Also, of course,
// bit_cast<> wraps up the nasty logic in one place.
//
// Fortunately memcpy() is very fast. In optimized mode, with a
// constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
// code with the minimal amount of data movement. On a 32-bit system,
// memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
// compiles to two loads and two stores.
//
// I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
//
// WARNING: if Dest or Source is a non-POD type, the result of the memcpy
// is likely to surprise you.
template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
// Used to explicitly mark the return value of a function as unused. If you are
// really sure you don't want to do anything with the return value of a function
// that has been marked WARN_UNUSED_RESULT, wrap it with this. Example:
//
// scoped_ptr<MyType> my_var = ...;
// if (TakeOwnership(my_var.get()) == SUCCESS)
// ignore_result(my_var.release());
//
template<typename T>
inline void ignore_result(const T&) {
}
// The following enum should be used only as a constructor argument to indicate
// that the variable has static storage class, and that the constructor should
// do nothing to its state. It indicates to the reader that it is legal to
// declare a static instance of the class, provided the constructor is given
// the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a
// static variable that has a constructor or a destructor because invocation
// order is undefined. However, IF the type can be initialized by filling with
// zeroes (which the loader does for static variables), AND the destructor also
// does nothing to the storage, AND there are no virtual methods, then a
// constructor declared as
// explicit MyClass(base::LinkerInitialized x) {}
// and invoked as
// static MyClass my_variable_name(base::LINKER_INITIALIZED);
namespace base {
enum LinkerInitialized { LINKER_INITIALIZED };
// Use these to declare and define a static local variable (static T;) so that
// it is leaked so that its destructors are not called at exit. If you need
// thread-safe initialization, use base/lazy_instance.h instead.
#define CR_DEFINE_STATIC_LOCAL(type, name, arguments) \
static type& name = *new type arguments
} // base
#endif // BASE_BASICTYPES_H_
|