1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SMALL_MAP_H_
#define BASE_CONTAINERS_SMALL_MAP_H_
#include <map>
#include <string>
#include <utility>
#include "base/basictypes.h"
#include "base/containers/hash_tables.h"
#include "base/logging.h"
#include "base/memory/manual_constructor.h"
namespace base {
// An STL-like associative container which starts out backed by a simple
// array but switches to some other container type if it grows beyond a
// fixed size.
//
// WHAT TYPE OF MAP SHOULD YOU USE?
// --------------------------------
//
// - std::map should be the default if you're not sure, since it's the most
// difficult to mess up. Generally this is backed by a red-black tree. It
// will generate a lot of code (if you use a common key type like int or
// string the linker will probably emiminate the duplicates). It will
// do heap allocations for each element.
//
// - If you only ever keep a couple of items and have very simple usage,
// consider whether a using a vector and brute-force searching it will be
// the most efficient. It's not a lot of generated code (less then a
// red-black tree if your key is "weird" and not eliminated as duplicate of
// something else) and will probably be faster and do fewer heap allocations
// than std::map if you have just a couple of items.
//
// - base::hash_map should be used if you need O(1) lookups. It may waste
// space in the hash table, and it can be easy to write correct-looking
// code with the default hash function being wrong or poorly-behaving.
//
// - SmallMap combines the performance benefits of the brute-force-searched
// vector for small cases (no extra heap allocations), but can efficiently
// fall back if you end up adding many items. It will generate more code
// than std::map (at least 160 bytes for operator[]) which is bad if you
// have a "weird" key where map functions can't be
// duplicate-code-eliminated. If you have a one-off key and aren't in
// performance-critical code, this bloat may negate some of the benefits and
// you should consider on of the other options.
//
// SmallMap will pick up the comparator from the underlying map type. In
// std::map (and in MSVC additionally hash_map) only a "less" operator is
// defined, which requires us to do two comparisons per element when doing the
// brute-force search in the simple array.
//
// We define default overrides for the common map types to avoid this
// double-compare, but you should be aware of this if you use your own
// operator< for your map and supply yor own version of == to the SmallMap.
// You can use regular operator== by just doing:
//
// base::SmallMap<std::map<MyKey, MyValue>, 4, std::equal_to<KyKey> >
//
//
// USAGE
// -----
//
// NormalMap: The map type to fall back to. This also defines the key
// and value types for the SmallMap.
// kArraySize: The size of the initial array of results. This will be
// allocated with the SmallMap object rather than separately on
// the heap. Once the map grows beyond this size, the map type
// will be used instead.
// EqualKey: A functor which tests two keys for equality. If the wrapped
// map type has a "key_equal" member (hash_map does), then that will
// be used by default. If the wrapped map type has a strict weak
// ordering "key_compare" (std::map does), that will be used to
// implement equality by default.
// MapInit: A functor that takes a ManualConstructor<NormalMap>* and uses it to
// initialize the map. This functor will be called at most once per
// SmallMap, when the map exceeds the threshold of kArraySize and we
// are about to copy values from the array to the map. The functor
// *must* call one of the Init() methods provided by
// ManualConstructor, since after it runs we assume that the NormalMap
// has been initialized.
//
// example:
// base::SmallMap< std::map<string, int> > days;
// days["sunday" ] = 0;
// days["monday" ] = 1;
// days["tuesday" ] = 2;
// days["wednesday"] = 3;
// days["thursday" ] = 4;
// days["friday" ] = 5;
// days["saturday" ] = 6;
//
// You should assume that SmallMap might invalidate all the iterators
// on any call to erase(), insert() and operator[].
namespace internal {
template <typename NormalMap>
class SmallMapDefaultInit {
public:
void operator()(ManualConstructor<NormalMap>* map) const {
map->Init();
}
};
// has_key_equal<M>::value is true iff there exists a type M::key_equal. This is
// used to dispatch to one of the select_equal_key<> metafunctions below.
template <typename M>
struct has_key_equal {
typedef char sml; // "small" is sometimes #defined so we use an abbreviation.
typedef struct { char dummy[2]; } big;
// Two functions, one accepts types that have a key_equal member, and one that
// accepts anything. They each return a value of a different size, so we can
// determine at compile-time which function would have been called.
template <typename U> static big test(typename U::key_equal*);
template <typename> static sml test(...);
// Determines if M::key_equal exists by looking at the size of the return
// type of the compiler-chosen test() function.
static const bool value = (sizeof(test<M>(0)) == sizeof(big));
};
template <typename M> const bool has_key_equal<M>::value;
// Base template used for map types that do NOT have an M::key_equal member,
// e.g., std::map<>. These maps have a strict weak ordering comparator rather
// than an equality functor, so equality will be implemented in terms of that
// comparator.
//
// There's a partial specialization of this template below for map types that do
// have an M::key_equal member.
template <typename M, bool has_key_equal_value>
struct select_equal_key {
struct equal_key {
bool operator()(const typename M::key_type& left,
const typename M::key_type& right) {
// Implements equality in terms of a strict weak ordering comparator.
typename M::key_compare comp;
return !comp(left, right) && !comp(right, left);
}
};
};
// Provide overrides to use operator== for key compare for the "normal" map and
// hash map types. If you override the default comparator or allocator for a
// map or hash_map, or use another type of map, this won't get used.
//
// If we switch to using std::unordered_map for base::hash_map, then the
// hash_map specialization can be removed.
template <typename KeyType, typename ValueType>
struct select_equal_key< std::map<KeyType, ValueType>, false> {
struct equal_key {
bool operator()(const KeyType& left, const KeyType& right) {
return left == right;
}
};
};
template <typename KeyType, typename ValueType>
struct select_equal_key< base::hash_map<KeyType, ValueType>, false> {
struct equal_key {
bool operator()(const KeyType& left, const KeyType& right) {
return left == right;
}
};
};
// Partial template specialization handles case where M::key_equal exists, e.g.,
// hash_map<>.
template <typename M>
struct select_equal_key<M, true> {
typedef typename M::key_equal equal_key;
};
} // namespace internal
template <typename NormalMap,
int kArraySize = 4,
typename EqualKey =
typename internal::select_equal_key<
NormalMap,
internal::has_key_equal<NormalMap>::value>::equal_key,
typename MapInit = internal::SmallMapDefaultInit<NormalMap> >
class SmallMap {
// We cannot rely on the compiler to reject array of size 0. In
// particular, gcc 2.95.3 does it but later versions allow 0-length
// arrays. Therefore, we explicitly reject non-positive kArraySize
// here.
COMPILE_ASSERT(kArraySize > 0, default_initial_size_should_be_positive);
public:
typedef typename NormalMap::key_type key_type;
typedef typename NormalMap::mapped_type data_type;
typedef typename NormalMap::mapped_type mapped_type;
typedef typename NormalMap::value_type value_type;
typedef EqualKey key_equal;
SmallMap() : size_(0), functor_(MapInit()) {}
explicit SmallMap(const MapInit& functor) : size_(0), functor_(functor) {}
// Allow copy-constructor and assignment, since STL allows them too.
SmallMap(const SmallMap& src) {
// size_ and functor_ are initted in InitFrom()
InitFrom(src);
}
void operator=(const SmallMap& src) {
if (&src == this) return;
// This is not optimal. If src and dest are both using the small
// array, we could skip the teardown and reconstruct. One problem
// to be resolved is that the value_type itself is pair<const K,
// V>, and const K is not assignable.
Destroy();
InitFrom(src);
}
~SmallMap() {
Destroy();
}
class const_iterator;
class iterator {
public:
typedef typename NormalMap::iterator::iterator_category iterator_category;
typedef typename NormalMap::iterator::value_type value_type;
typedef typename NormalMap::iterator::difference_type difference_type;
typedef typename NormalMap::iterator::pointer pointer;
typedef typename NormalMap::iterator::reference reference;
inline iterator(): array_iter_(NULL) {}
inline iterator& operator++() {
if (array_iter_ != NULL) {
++array_iter_;
} else {
++hash_iter_;
}
return *this;
}
inline iterator operator++(int /*unused*/) {
iterator result(*this);
++(*this);
return result;
}
inline iterator& operator--() {
if (array_iter_ != NULL) {
--array_iter_;
} else {
--hash_iter_;
}
return *this;
}
inline iterator operator--(int /*unused*/) {
iterator result(*this);
--(*this);
return result;
}
inline value_type* operator->() const {
if (array_iter_ != NULL) {
return array_iter_->get();
} else {
return hash_iter_.operator->();
}
}
inline value_type& operator*() const {
if (array_iter_ != NULL) {
return *array_iter_->get();
} else {
return *hash_iter_;
}
}
inline bool operator==(const iterator& other) const {
if (array_iter_ != NULL) {
return array_iter_ == other.array_iter_;
} else {
return other.array_iter_ == NULL && hash_iter_ == other.hash_iter_;
}
}
inline bool operator!=(const iterator& other) const {
return !(*this == other);
}
bool operator==(const const_iterator& other) const;
bool operator!=(const const_iterator& other) const;
private:
friend class SmallMap;
friend class const_iterator;
inline explicit iterator(ManualConstructor<value_type>* init)
: array_iter_(init) {}
inline explicit iterator(const typename NormalMap::iterator& init)
: array_iter_(NULL), hash_iter_(init) {}
ManualConstructor<value_type>* array_iter_;
typename NormalMap::iterator hash_iter_;
};
class const_iterator {
public:
typedef typename NormalMap::const_iterator::iterator_category
iterator_category;
typedef typename NormalMap::const_iterator::value_type value_type;
typedef typename NormalMap::const_iterator::difference_type difference_type;
typedef typename NormalMap::const_iterator::pointer pointer;
typedef typename NormalMap::const_iterator::reference reference;
inline const_iterator(): array_iter_(NULL) {}
// Non-explicit ctor lets us convert regular iterators to const iterators
inline const_iterator(const iterator& other)
: array_iter_(other.array_iter_), hash_iter_(other.hash_iter_) {}
inline const_iterator& operator++() {
if (array_iter_ != NULL) {
++array_iter_;
} else {
++hash_iter_;
}
return *this;
}
inline const_iterator operator++(int /*unused*/) {
const_iterator result(*this);
++(*this);
return result;
}
inline const_iterator& operator--() {
if (array_iter_ != NULL) {
--array_iter_;
} else {
--hash_iter_;
}
return *this;
}
inline const_iterator operator--(int /*unused*/) {
const_iterator result(*this);
--(*this);
return result;
}
inline const value_type* operator->() const {
if (array_iter_ != NULL) {
return array_iter_->get();
} else {
return hash_iter_.operator->();
}
}
inline const value_type& operator*() const {
if (array_iter_ != NULL) {
return *array_iter_->get();
} else {
return *hash_iter_;
}
}
inline bool operator==(const const_iterator& other) const {
if (array_iter_ != NULL) {
return array_iter_ == other.array_iter_;
} else {
return other.array_iter_ == NULL && hash_iter_ == other.hash_iter_;
}
}
inline bool operator!=(const const_iterator& other) const {
return !(*this == other);
}
private:
friend class SmallMap;
inline explicit const_iterator(
const ManualConstructor<value_type>* init)
: array_iter_(init) {}
inline explicit const_iterator(
const typename NormalMap::const_iterator& init)
: array_iter_(NULL), hash_iter_(init) {}
const ManualConstructor<value_type>* array_iter_;
typename NormalMap::const_iterator hash_iter_;
};
iterator find(const key_type& key) {
key_equal compare;
if (size_ >= 0) {
for (int i = 0; i < size_; i++) {
if (compare(array_[i]->first, key)) {
return iterator(array_ + i);
}
}
return iterator(array_ + size_);
} else {
return iterator(map()->find(key));
}
}
const_iterator find(const key_type& key) const {
key_equal compare;
if (size_ >= 0) {
for (int i = 0; i < size_; i++) {
if (compare(array_[i]->first, key)) {
return const_iterator(array_ + i);
}
}
return const_iterator(array_ + size_);
} else {
return const_iterator(map()->find(key));
}
}
// Invalidates iterators.
data_type& operator[](const key_type& key) {
key_equal compare;
if (size_ >= 0) {
// operator[] searches backwards, favoring recently-added
// elements.
for (int i = size_-1; i >= 0; --i) {
if (compare(array_[i]->first, key)) {
return array_[i]->second;
}
}
if (size_ == kArraySize) {
ConvertToRealMap();
return (*map_)[key];
} else {
array_[size_].Init(key, data_type());
return array_[size_++]->second;
}
} else {
return (*map_)[key];
}
}
// Invalidates iterators.
std::pair<iterator, bool> insert(const value_type& x) {
key_equal compare;
if (size_ >= 0) {
for (int i = 0; i < size_; i++) {
if (compare(array_[i]->first, x.first)) {
return std::make_pair(iterator(array_ + i), false);
}
}
if (size_ == kArraySize) {
ConvertToRealMap(); // Invalidates all iterators!
std::pair<typename NormalMap::iterator, bool> ret = map_->insert(x);
return std::make_pair(iterator(ret.first), ret.second);
} else {
array_[size_].Init(x);
return std::make_pair(iterator(array_ + size_++), true);
}
} else {
std::pair<typename NormalMap::iterator, bool> ret = map_->insert(x);
return std::make_pair(iterator(ret.first), ret.second);
}
}
// Invalidates iterators.
template <class InputIterator>
void insert(InputIterator f, InputIterator l) {
while (f != l) {
insert(*f);
++f;
}
}
iterator begin() {
if (size_ >= 0) {
return iterator(array_);
} else {
return iterator(map_->begin());
}
}
const_iterator begin() const {
if (size_ >= 0) {
return const_iterator(array_);
} else {
return const_iterator(map_->begin());
}
}
iterator end() {
if (size_ >= 0) {
return iterator(array_ + size_);
} else {
return iterator(map_->end());
}
}
const_iterator end() const {
if (size_ >= 0) {
return const_iterator(array_ + size_);
} else {
return const_iterator(map_->end());
}
}
void clear() {
if (size_ >= 0) {
for (int i = 0; i < size_; i++) {
array_[i].Destroy();
}
} else {
map_.Destroy();
}
size_ = 0;
}
// Invalidates iterators.
void erase(const iterator& position) {
if (size_ >= 0) {
int i = position.array_iter_ - array_;
array_[i].Destroy();
--size_;
if (i != size_) {
array_[i].Init(*array_[size_]);
array_[size_].Destroy();
}
} else {
map_->erase(position.hash_iter_);
}
}
size_t erase(const key_type& key) {
iterator iter = find(key);
if (iter == end()) return 0u;
erase(iter);
return 1u;
}
size_t count(const key_type& key) const {
return (find(key) == end()) ? 0 : 1;
}
size_t size() const {
if (size_ >= 0) {
return static_cast<size_t>(size_);
} else {
return map_->size();
}
}
bool empty() const {
if (size_ >= 0) {
return (size_ == 0);
} else {
return map_->empty();
}
}
// Returns true if we have fallen back to using the underlying map
// representation.
bool UsingFullMap() const {
return size_ < 0;
}
inline NormalMap* map() {
CHECK(UsingFullMap());
return map_.get();
}
inline const NormalMap* map() const {
CHECK(UsingFullMap());
return map_.get();
}
private:
int size_; // negative = using hash_map
MapInit functor_;
// We want to call constructors and destructors manually, but we don't
// want to allocate and deallocate the memory used for them separately.
// So, we use this crazy ManualConstructor class.
//
// Since array_ and map_ are mutually exclusive, we'll put them in a
// union, too. We add in a dummy_ value which quiets MSVC from otherwise
// giving an erroneous "union member has copy constructor" error message
// (C2621). This dummy member has to come before array_ to quiet the
// compiler.
//
// TODO(brettw) remove this and use C++11 unions when we require C++11.
union {
ManualConstructor<value_type> dummy_;
ManualConstructor<value_type> array_[kArraySize];
ManualConstructor<NormalMap> map_;
};
void ConvertToRealMap() {
// Move the current elements into a temporary array.
ManualConstructor<value_type> temp_array[kArraySize];
for (int i = 0; i < kArraySize; i++) {
temp_array[i].Init(*array_[i]);
array_[i].Destroy();
}
// Initialize the map.
size_ = -1;
functor_(&map_);
// Insert elements into it.
for (int i = 0; i < kArraySize; i++) {
map_->insert(*temp_array[i]);
temp_array[i].Destroy();
}
}
// Helpers for constructors and destructors.
void InitFrom(const SmallMap& src) {
functor_ = src.functor_;
size_ = src.size_;
if (src.size_ >= 0) {
for (int i = 0; i < size_; i++) {
array_[i].Init(*src.array_[i]);
}
} else {
functor_(&map_);
(*map_.get()) = (*src.map_.get());
}
}
void Destroy() {
if (size_ >= 0) {
for (int i = 0; i < size_; i++) {
array_[i].Destroy();
}
} else {
map_.Destroy();
}
}
};
template <typename NormalMap, int kArraySize, typename EqualKey,
typename Functor>
inline bool SmallMap<NormalMap, kArraySize, EqualKey,
Functor>::iterator::operator==(
const const_iterator& other) const {
return other == *this;
}
template <typename NormalMap, int kArraySize, typename EqualKey,
typename Functor>
inline bool SmallMap<NormalMap, kArraySize, EqualKey,
Functor>::iterator::operator!=(
const const_iterator& other) const {
return other != *this;
}
} // namespace base
#endif // BASE_CONTAINERS_SMALL_MAP_H_
|