1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu.h"
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include "base/basictypes.h"
#include "base/strings/string_piece.h"
#include "build/build_config.h"
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
#include "base/files/file_util.h"
#include "base/lazy_instance.h"
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(_MSC_VER)
#include <intrin.h>
#include <immintrin.h> // For _xgetbv()
#endif
#endif
namespace base {
CPU::CPU()
: signature_(0),
type_(0),
family_(0),
model_(0),
stepping_(0),
ext_model_(0),
ext_family_(0),
has_mmx_(false),
has_sse_(false),
has_sse2_(false),
has_sse3_(false),
has_ssse3_(false),
has_sse41_(false),
has_sse42_(false),
has_avx_(false),
has_avx_hardware_(false),
has_aesni_(false),
has_non_stop_time_stamp_counter_(false),
has_broken_neon_(false),
cpu_vendor_("unknown") {
Initialize();
}
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
#ifndef _MSC_VER
#if defined(__pic__) && defined(__i386__)
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile (
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type)
);
}
#else
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile (
"cpuid \n\t"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type)
);
}
#endif
// _xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64 _xgetbv(uint32 xcr) {
uint32 eax, edx;
__asm__ volatile ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (xcr));
return (static_cast<uint64>(edx) << 32) | eax;
}
#endif // !_MSC_VER
#endif // ARCH_CPU_X86_FAMILY
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
class LazyCpuInfoValue {
public:
LazyCpuInfoValue() : has_broken_neon_(false) {
// This function finds the value from /proc/cpuinfo under the key "model
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
// and later for arm64) and is shown once per CPU. "Processor" is used in
// earler versions and is shown only once at the top of /proc/cpuinfo
// regardless of the number CPUs.
const char kModelNamePrefix[] = "model name\t: ";
const char kProcessorPrefix[] = "Processor\t: ";
// This function also calculates whether we believe that this CPU has a
// broken NEON unit based on these fields from cpuinfo:
unsigned implementer = 0, architecture = 0, variant = 0, part = 0,
revision = 0;
const struct {
const char key[17];
unsigned *result;
} kUnsignedValues[] = {
{"CPU implementer", &implementer},
{"CPU architecture", &architecture},
{"CPU variant", &variant},
{"CPU part", &part},
{"CPU revision", &revision},
};
std::string contents;
ReadFileToString(FilePath("/proc/cpuinfo"), &contents);
DCHECK(!contents.empty());
if (contents.empty()) {
return;
}
std::istringstream iss(contents);
std::string line;
while (std::getline(iss, line)) {
if (brand_.empty() &&
(line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0 ||
line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)) {
brand_.assign(line.substr(strlen(kModelNamePrefix)));
}
for (size_t i = 0; i < arraysize(kUnsignedValues); i++) {
const char *key = kUnsignedValues[i].key;
const size_t len = strlen(key);
if (line.compare(0, len, key) == 0 &&
line.size() >= len + 1 &&
(line[len] == '\t' || line[len] == ' ' || line[len] == ':')) {
size_t colon_pos = line.find(':', len);
if (colon_pos == std::string::npos) {
continue;
}
const StringPiece line_sp(line);
StringPiece value_sp = line_sp.substr(colon_pos + 1);
while (!value_sp.empty() &&
(value_sp[0] == ' ' || value_sp[0] == '\t')) {
value_sp = value_sp.substr(1);
}
// The string may have leading "0x" or not, so we use strtoul to
// handle that.
char *endptr;
std::string value(value_sp.as_string());
unsigned long int result = strtoul(value.c_str(), &endptr, 0);
if (*endptr == 0 && result <= UINT_MAX) {
*kUnsignedValues[i].result = result;
}
}
}
}
has_broken_neon_ =
implementer == 0x51 &&
architecture == 7 &&
variant == 1 &&
part == 0x4d &&
revision == 0;
}
const std::string& brand() const { return brand_; }
bool has_broken_neon() const { return has_broken_neon_; }
private:
std::string brand_;
bool has_broken_neon_;
DISALLOW_COPY_AND_ASSIGN(LazyCpuInfoValue);
};
base::LazyInstance<LazyCpuInfoValue>::Leaky g_lazy_cpuinfo =
LAZY_INSTANCE_INITIALIZER;
#endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
// defined(OS_LINUX))
} // anonymous namespace
void CPU::Initialize() {
#if defined(ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1};
char cpu_string[48];
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before using memcpy to copy these three array elements to cpu_string.
__cpuid(cpu_info, 0);
int num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
memcpy(cpu_string, &cpu_info[1], 3 * sizeof(cpu_info[1]));
cpu_vendor_.assign(cpu_string, 3 * sizeof(cpu_info[1]));
// Interpret CPU feature information.
if (num_ids > 0) {
__cpuid(cpu_info, 1);
signature_ = cpu_info[0];
stepping_ = cpu_info[0] & 0xf;
model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
family_ = (cpu_info[0] >> 8) & 0xf;
type_ = (cpu_info[0] >> 12) & 0x3;
ext_model_ = (cpu_info[0] >> 16) & 0xf;
ext_family_ = (cpu_info[0] >> 20) & 0xff;
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_avx_hardware_ =
(cpu_info[2] & 0x10000000) != 0;
// AVX instructions will generate an illegal instruction exception unless
// a) they are supported by the CPU,
// b) XSAVE is supported by the CPU and
// c) XSAVE is enabled by the kernel.
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
//
// In addition, we have observed some crashes with the xgetbv instruction
// even after following Intel's example code. (See crbug.com/375968.)
// Because of that, we also test the XSAVE bit because its description in
// the CPUID documentation suggests that it signals xgetbv support.
has_avx_ =
has_avx_hardware_ &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(_xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
}
// Get the brand string of the cpu.
__cpuid(cpu_info, 0x80000000);
const int parameter_end = 0x80000004;
int max_parameter = cpu_info[0];
if (cpu_info[0] >= parameter_end) {
char* cpu_string_ptr = cpu_string;
for (int parameter = 0x80000002; parameter <= parameter_end &&
cpu_string_ptr < &cpu_string[sizeof(cpu_string)]; parameter++) {
__cpuid(cpu_info, parameter);
memcpy(cpu_string_ptr, cpu_info, sizeof(cpu_info));
cpu_string_ptr += sizeof(cpu_info);
}
cpu_brand_.assign(cpu_string, cpu_string_ptr - cpu_string);
}
const int parameter_containing_non_stop_time_stamp_counter = 0x80000007;
if (max_parameter >= parameter_containing_non_stop_time_stamp_counter) {
__cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
#elif defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
cpu_brand_.assign(g_lazy_cpuinfo.Get().brand());
has_broken_neon_ = g_lazy_cpuinfo.Get().has_broken_neon();
#endif
}
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
if (has_avx()) return AVX;
if (has_sse42()) return SSE42;
if (has_sse41()) return SSE41;
if (has_ssse3()) return SSSE3;
if (has_sse3()) return SSE3;
if (has_sse2()) return SSE2;
if (has_sse()) return SSE;
return PENTIUM;
}
} // namespace base
|