summaryrefslogtreecommitdiffstats
path: root/base/process/process_metrics_linux.cc
blob: 0e0d0124c5f4d57b84cadf2ae19af6fc9a7a7fe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/process/process_metrics.h"

#include <dirent.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#include "base/file_util.h"
#include "base/logging.h"
#include "base/process/internal_linux.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "base/sys_info.h"
#include "base/threading/thread_restrictions.h"

namespace base {

namespace {

enum ParsingState {
  KEY_NAME,
  KEY_VALUE
};

#ifdef OS_CHROMEOS
// Read a file with a single number string and return the number as a uint64.
static uint64 ReadFileToUint64(const base::FilePath file) {
  std::string file_as_string;
  if (!ReadFileToString(file, &file_as_string))
    return 0;
  TrimWhitespaceASCII(file_as_string, TRIM_ALL, &file_as_string);
  uint64 file_as_uint64 = 0;
  if (!base::StringToUint64(file_as_string, &file_as_uint64))
    return 0;
  return file_as_uint64;
}
#endif

// Read /proc/<pid>/status and returns the value for |field|, or 0 on failure.
// Only works for fields in the form of "Field: value kB".
size_t ReadProcStatusAndGetFieldAsSizeT(pid_t pid, const std::string& field) {
  FilePath stat_file = internal::GetProcPidDir(pid).Append("status");
  std::string status;
  {
    // Synchronously reading files in /proc is safe.
    ThreadRestrictions::ScopedAllowIO allow_io;
    if (!ReadFileToString(stat_file, &status))
      return 0;
  }

  StringTokenizer tokenizer(status, ":\n");
  ParsingState state = KEY_NAME;
  StringPiece last_key_name;
  while (tokenizer.GetNext()) {
    switch (state) {
      case KEY_NAME:
        last_key_name = tokenizer.token_piece();
        state = KEY_VALUE;
        break;
      case KEY_VALUE:
        DCHECK(!last_key_name.empty());
        if (last_key_name == field) {
          std::string value_str;
          tokenizer.token_piece().CopyToString(&value_str);
          std::string value_str_trimmed;
          TrimWhitespaceASCII(value_str, TRIM_ALL, &value_str_trimmed);
          std::vector<std::string> split_value_str;
          SplitString(value_str_trimmed, ' ', &split_value_str);
          if (split_value_str.size() != 2 || split_value_str[1] != "kB") {
            NOTREACHED();
            return 0;
          }
          size_t value;
          if (!StringToSizeT(split_value_str[0], &value)) {
            NOTREACHED();
            return 0;
          }
          return value;
        }
        state = KEY_NAME;
        break;
    }
  }
  NOTREACHED();
  return 0;
}

// Get the total CPU of a single process.  Return value is number of jiffies
// on success or -1 on error.
int GetProcessCPU(pid_t pid) {
  // Use /proc/<pid>/task to find all threads and parse their /stat file.
  FilePath task_path = internal::GetProcPidDir(pid).Append("task");

  DIR* dir = opendir(task_path.value().c_str());
  if (!dir) {
    DPLOG(ERROR) << "opendir(" << task_path.value() << ")";
    return -1;
  }

  int total_cpu = 0;
  while (struct dirent* ent = readdir(dir)) {
    pid_t tid = internal::ProcDirSlotToPid(ent->d_name);
    if (!tid)
      continue;

    // Synchronously reading files in /proc is safe.
    ThreadRestrictions::ScopedAllowIO allow_io;

    std::string stat;
    FilePath stat_path =
        task_path.Append(ent->d_name).Append(internal::kStatFile);
    if (ReadFileToString(stat_path, &stat)) {
      int cpu = ParseProcStatCPU(stat);
      if (cpu > 0)
        total_cpu += cpu;
    }
  }
  closedir(dir);

  return total_cpu;
}

}  // namespace

// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
  return new ProcessMetrics(process);
}

// On linux, we return vsize.
size_t ProcessMetrics::GetPagefileUsage() const {
  return internal::ReadProcStatsAndGetFieldAsSizeT(process_,
                                                   internal::VM_VSIZE);
}

// On linux, we return the high water mark of vsize.
size_t ProcessMetrics::GetPeakPagefileUsage() const {
  return ReadProcStatusAndGetFieldAsSizeT(process_, "VmPeak") * 1024;
}

// On linux, we return RSS.
size_t ProcessMetrics::GetWorkingSetSize() const {
  return internal::ReadProcStatsAndGetFieldAsSizeT(process_, internal::VM_RSS) *
      getpagesize();
}

// On linux, we return the high water mark of RSS.
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
  return ReadProcStatusAndGetFieldAsSizeT(process_, "VmHWM") * 1024;
}

bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
                                    size_t* shared_bytes) {
  WorkingSetKBytes ws_usage;
  if (!GetWorkingSetKBytes(&ws_usage))
    return false;

  if (private_bytes)
    *private_bytes = ws_usage.priv * 1024;

  if (shared_bytes)
    *shared_bytes = ws_usage.shared * 1024;

  return true;
}

bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
#if defined(OS_CHROMEOS)
  if (GetWorkingSetKBytesTotmaps(ws_usage))
    return true;
#endif
  return GetWorkingSetKBytesStatm(ws_usage);
}

double ProcessMetrics::GetCPUUsage() {
  struct timeval now;
  int retval = gettimeofday(&now, NULL);
  if (retval)
    return 0;
  int64 time = TimeValToMicroseconds(now);

  if (last_time_ == 0) {
    // First call, just set the last values.
    last_time_ = time;
    last_cpu_ = GetProcessCPU(process_);
    return 0;
  }

  int64 time_delta = time - last_time_;
  DCHECK_NE(time_delta, 0);
  if (time_delta == 0)
    return 0;

  int cpu = GetProcessCPU(process_);

  // We have the number of jiffies in the time period.  Convert to percentage.
  // Note this means we will go *over* 100 in the case where multiple threads
  // are together adding to more than one CPU's worth.
  TimeDelta cpu_time = internal::ClockTicksToTimeDelta(cpu);
  TimeDelta last_cpu_time = internal::ClockTicksToTimeDelta(last_cpu_);
  int percentage = 100 * (cpu_time - last_cpu_time).InSecondsF() /
      TimeDelta::FromMicroseconds(time_delta).InSecondsF();

  last_time_ = time;
  last_cpu_ = cpu;

  return percentage;
}

// To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING
// in your kernel configuration.
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
  // Synchronously reading files in /proc is safe.
  ThreadRestrictions::ScopedAllowIO allow_io;

  std::string proc_io_contents;
  FilePath io_file = internal::GetProcPidDir(process_).Append("io");
  if (!ReadFileToString(io_file, &proc_io_contents))
    return false;

  (*io_counters).OtherOperationCount = 0;
  (*io_counters).OtherTransferCount = 0;

  StringTokenizer tokenizer(proc_io_contents, ": \n");
  ParsingState state = KEY_NAME;
  StringPiece last_key_name;
  while (tokenizer.GetNext()) {
    switch (state) {
      case KEY_NAME:
        last_key_name = tokenizer.token_piece();
        state = KEY_VALUE;
        break;
      case KEY_VALUE:
        DCHECK(!last_key_name.empty());
        if (last_key_name == "syscr") {
          StringToInt64(tokenizer.token_piece(),
              reinterpret_cast<int64*>(&(*io_counters).ReadOperationCount));
        } else if (last_key_name == "syscw") {
          StringToInt64(tokenizer.token_piece(),
              reinterpret_cast<int64*>(&(*io_counters).WriteOperationCount));
        } else if (last_key_name == "rchar") {
          StringToInt64(tokenizer.token_piece(),
              reinterpret_cast<int64*>(&(*io_counters).ReadTransferCount));
        } else if (last_key_name == "wchar") {
          StringToInt64(tokenizer.token_piece(),
              reinterpret_cast<int64*>(&(*io_counters).WriteTransferCount));
        }
        state = KEY_NAME;
        break;
    }
  }
  return true;
}

ProcessMetrics::ProcessMetrics(ProcessHandle process)
    : process_(process),
      last_time_(0),
      last_system_time_(0),
      last_cpu_(0) {
  processor_count_ = base::SysInfo::NumberOfProcessors();
}

#if defined(OS_CHROMEOS)
// Private, Shared and Proportional working set sizes are obtained from
// /proc/<pid>/totmaps
bool ProcessMetrics::GetWorkingSetKBytesTotmaps(WorkingSetKBytes *ws_usage)
  const {
  // The format of /proc/<pid>/totmaps is:
  //
  // Rss:                6120 kB
  // Pss:                3335 kB
  // Shared_Clean:       1008 kB
  // Shared_Dirty:       4012 kB
  // Private_Clean:         4 kB
  // Private_Dirty:      1096 kB
  // Referenced:          XXX kB
  // Anonymous:           XXX kB
  // AnonHugePages:       XXX kB
  // Swap:                XXX kB
  // Locked:              XXX kB
  const size_t kPssIndex = (1 * 3) + 1;
  const size_t kPrivate_CleanIndex = (4 * 3) + 1;
  const size_t kPrivate_DirtyIndex = (5 * 3) + 1;
  const size_t kSwapIndex = (9 * 3) + 1;

  std::string totmaps_data;
  {
    FilePath totmaps_file = internal::GetProcPidDir(process_).Append("totmaps");
    ThreadRestrictions::ScopedAllowIO allow_io;
    bool ret = ReadFileToString(totmaps_file, &totmaps_data);
    if (!ret || totmaps_data.length() == 0)
      return false;
  }

  std::vector<std::string> totmaps_fields;
  SplitStringAlongWhitespace(totmaps_data, &totmaps_fields);

  DCHECK_EQ("Pss:", totmaps_fields[kPssIndex-1]);
  DCHECK_EQ("Private_Clean:", totmaps_fields[kPrivate_CleanIndex - 1]);
  DCHECK_EQ("Private_Dirty:", totmaps_fields[kPrivate_DirtyIndex - 1]);
  DCHECK_EQ("Swap:", totmaps_fields[kSwapIndex-1]);

  int pss = 0;
  int private_clean = 0;
  int private_dirty = 0;
  int swap = 0;
  bool ret = true;
  ret &= StringToInt(totmaps_fields[kPssIndex], &pss);
  ret &= StringToInt(totmaps_fields[kPrivate_CleanIndex], &private_clean);
  ret &= StringToInt(totmaps_fields[kPrivate_DirtyIndex], &private_dirty);
  ret &= StringToInt(totmaps_fields[kSwapIndex], &swap);

  // On ChromeOS swap is to zram. We count this as private / shared, as
  // increased swap decreases available RAM to user processes, which would
  // otherwise create surprising results.
  ws_usage->priv = private_clean + private_dirty + swap;
  ws_usage->shared = pss + swap;
  ws_usage->shareable = 0;
  ws_usage->swapped = swap;
  return ret;
}
#endif

// Private and Shared working set sizes are obtained from /proc/<pid>/statm.
bool ProcessMetrics::GetWorkingSetKBytesStatm(WorkingSetKBytes* ws_usage)
    const {
  // Use statm instead of smaps because smaps is:
  // a) Large and slow to parse.
  // b) Unavailable in the SUID sandbox.

  // First we need to get the page size, since everything is measured in pages.
  // For details, see: man 5 proc.
  const int page_size_kb = getpagesize() / 1024;
  if (page_size_kb <= 0)
    return false;

  std::string statm;
  {
    FilePath statm_file = internal::GetProcPidDir(process_).Append("statm");
    // Synchronously reading files in /proc is safe.
    ThreadRestrictions::ScopedAllowIO allow_io;
    bool ret = ReadFileToString(statm_file, &statm);
    if (!ret || statm.length() == 0)
      return false;
  }

  std::vector<std::string> statm_vec;
  SplitString(statm, ' ', &statm_vec);
  if (statm_vec.size() != 7)
    return false;  // Not the format we expect.

  int statm_rss, statm_shared;
  bool ret = true;
  ret &= StringToInt(statm_vec[1], &statm_rss);
  ret &= StringToInt(statm_vec[2], &statm_shared);

  ws_usage->priv = (statm_rss - statm_shared) * page_size_kb;
  ws_usage->shared = statm_shared * page_size_kb;

  // Sharable is not calculated, as it does not provide interesting data.
  ws_usage->shareable = 0;

#if defined(OS_CHROMEOS)
  // Can't get swapped memory from statm.
  ws_usage->swapped = 0;
#endif

  return ret;
}

size_t GetSystemCommitCharge() {
  SystemMemoryInfoKB meminfo;
  if (!GetSystemMemoryInfo(&meminfo))
    return 0;
  return meminfo.total - meminfo.free - meminfo.buffers - meminfo.cached;
}

// Exposed for testing.
int ParseProcStatCPU(const std::string& input) {
  std::vector<std::string> proc_stats;
  if (!internal::ParseProcStats(input, &proc_stats))
    return -1;

  if (proc_stats.size() <= internal::VM_STIME)
    return -1;
  int utime = GetProcStatsFieldAsInt(proc_stats, internal::VM_UTIME);
  int stime = GetProcStatsFieldAsInt(proc_stats, internal::VM_STIME);
  return utime + stime;
}

const char kProcSelfExe[] = "/proc/self/exe";

int GetNumberOfThreads(ProcessHandle process) {
  return internal::ReadProcStatsAndGetFieldAsInt(process,
                                                 internal::VM_NUMTHREADS);
}

namespace {

// The format of /proc/meminfo is:
//
// MemTotal:      8235324 kB
// MemFree:       1628304 kB
// Buffers:        429596 kB
// Cached:        4728232 kB
// ...
const size_t kMemTotalIndex = 1;
const size_t kMemFreeIndex = 4;
const size_t kMemBuffersIndex = 7;
const size_t kMemCachedIndex = 10;
const size_t kMemActiveAnonIndex = 22;
const size_t kMemInactiveAnonIndex = 25;
const size_t kMemActiveFileIndex = 28;
const size_t kMemInactiveFileIndex = 31;

}  // namespace

SystemMemoryInfoKB::SystemMemoryInfoKB()
    : total(0),
      free(0),
      buffers(0),
      cached(0),
      active_anon(0),
      inactive_anon(0),
      active_file(0),
      inactive_file(0),
      shmem(0),
      gem_objects(-1),
      gem_size(-1) {
}

bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
  // Synchronously reading files in /proc is safe.
  ThreadRestrictions::ScopedAllowIO allow_io;

  // Used memory is: total - free - buffers - caches
  FilePath meminfo_file("/proc/meminfo");
  std::string meminfo_data;
  if (!ReadFileToString(meminfo_file, &meminfo_data)) {
    DLOG(WARNING) << "Failed to open " << meminfo_file.value();
    return false;
  }
  std::vector<std::string> meminfo_fields;
  SplitStringAlongWhitespace(meminfo_data, &meminfo_fields);

  if (meminfo_fields.size() < kMemCachedIndex) {
    DLOG(WARNING) << "Failed to parse " << meminfo_file.value()
                  << ".  Only found " << meminfo_fields.size() << " fields.";
    return false;
  }

  DCHECK_EQ(meminfo_fields[kMemTotalIndex-1], "MemTotal:");
  DCHECK_EQ(meminfo_fields[kMemFreeIndex-1], "MemFree:");
  DCHECK_EQ(meminfo_fields[kMemBuffersIndex-1], "Buffers:");
  DCHECK_EQ(meminfo_fields[kMemCachedIndex-1], "Cached:");
  DCHECK_EQ(meminfo_fields[kMemActiveAnonIndex-1], "Active(anon):");
  DCHECK_EQ(meminfo_fields[kMemInactiveAnonIndex-1], "Inactive(anon):");
  DCHECK_EQ(meminfo_fields[kMemActiveFileIndex-1], "Active(file):");
  DCHECK_EQ(meminfo_fields[kMemInactiveFileIndex-1], "Inactive(file):");

  StringToInt(meminfo_fields[kMemTotalIndex], &meminfo->total);
  StringToInt(meminfo_fields[kMemFreeIndex], &meminfo->free);
  StringToInt(meminfo_fields[kMemBuffersIndex], &meminfo->buffers);
  StringToInt(meminfo_fields[kMemCachedIndex], &meminfo->cached);
  StringToInt(meminfo_fields[kMemActiveAnonIndex], &meminfo->active_anon);
  StringToInt(meminfo_fields[kMemInactiveAnonIndex],
                    &meminfo->inactive_anon);
  StringToInt(meminfo_fields[kMemActiveFileIndex], &meminfo->active_file);
  StringToInt(meminfo_fields[kMemInactiveFileIndex],
                    &meminfo->inactive_file);
#if defined(OS_CHROMEOS)
  // Chrome OS has a tweaked kernel that allows us to query Shmem, which is
  // usually video memory otherwise invisible to the OS.  Unfortunately, the
  // meminfo format varies on different hardware so we have to search for the
  // string.  It always appears after "Cached:".
  for (size_t i = kMemCachedIndex+2; i < meminfo_fields.size(); i += 3) {
    if (meminfo_fields[i] == "Shmem:") {
      StringToInt(meminfo_fields[i+1], &meminfo->shmem);
      break;
    }
  }

  // Report on Chrome OS GEM object graphics memory. /var/run/debugfs_gpu is a
  // bind mount into /sys/kernel/debug and synchronously reading the in-memory
  // files in /sys is fast.
#if defined(ARCH_CPU_ARM_FAMILY)
  FilePath geminfo_file("/var/run/debugfs_gpu/exynos_gem_objects");
#else
  FilePath geminfo_file("/var/run/debugfs_gpu/i915_gem_objects");
#endif
  std::string geminfo_data;
  meminfo->gem_objects = -1;
  meminfo->gem_size = -1;
  if (ReadFileToString(geminfo_file, &geminfo_data)) {
    int gem_objects = -1;
    long long gem_size = -1;
    int num_res = sscanf(geminfo_data.c_str(),
                         "%d objects, %lld bytes",
                         &gem_objects, &gem_size);
    if (num_res == 2) {
      meminfo->gem_objects = gem_objects;
      meminfo->gem_size = gem_size;
    }
  }

#if defined(ARCH_CPU_ARM_FAMILY)
  // Incorporate Mali graphics memory if present.
  FilePath mali_memory_file("/sys/devices/platform/mali.0/memory");
  std::string mali_memory_data;
  if (ReadFileToString(mali_memory_file, &mali_memory_data)) {
    long long mali_size = -1;
    int num_res = sscanf(mali_memory_data.c_str(), "%lld bytes", &mali_size);
    if (num_res == 1)
      meminfo->gem_size += mali_size;
  }
#endif  // defined(ARCH_CPU_ARM_FAMILY)
#endif  // defined(OS_CHROMEOS)

  return true;
}

#if defined(OS_CHROMEOS)
void GetSwapInfo(SwapInfo* swap_info) {
  // Synchronously reading files in /sys/block/zram0 is safe.
  ThreadRestrictions::ScopedAllowIO allow_io;

  base::FilePath zram_path("/sys/block/zram0");
  uint64 orig_data_size = ReadFileToUint64(zram_path.Append("orig_data_size"));
  if (orig_data_size <= 4096) {
    // A single page is compressed at startup, and has a high compression
    // ratio. We ignore this as it doesn't indicate any real swapping.
    swap_info->orig_data_size = 0;
    swap_info->num_reads = 0;
    swap_info->num_writes = 0;
    swap_info->compr_data_size = 0;
    swap_info->mem_used_total = 0;
    return;
  }
  swap_info->orig_data_size = orig_data_size;
  swap_info->num_reads = ReadFileToUint64(zram_path.Append("num_reads"));
  swap_info->num_writes = ReadFileToUint64(zram_path.Append("num_writes"));
  swap_info->compr_data_size =
      ReadFileToUint64(zram_path.Append("compr_data_size"));
  swap_info->mem_used_total =
      ReadFileToUint64(zram_path.Append("mem_used_total"));
}
#endif  // defined(OS_CHROMEOS)

}  // namespace base