1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file/namespace contains utility functions for enumerating, ending and
// computing statistics of processes.
#ifndef BASE_PROCESS_UTIL_H_
#define BASE_PROCESS_UTIL_H_
#include "base/basictypes.h"
#if defined(OS_WIN)
#include <windows.h>
#include <tlhelp32.h>
#elif defined(OS_LINUX)
#include <dirent.h>
#include <limits.h>
#include <sys/types.h>
#endif
#include <string>
#include <vector>
#include "base/command_line.h"
#include "base/process.h"
#if defined(OS_WIN)
typedef PROCESSENTRY32 ProcessEntry;
typedef IO_COUNTERS IoCounters;
#elif defined(OS_POSIX)
// TODO(port): we should not rely on a Win32 structure.
struct ProcessEntry {
int pid;
int ppid;
char szExeFile[NAME_MAX + 1];
};
struct IoCounters {
unsigned long long ReadOperationCount;
unsigned long long WriteOperationCount;
unsigned long long OtherOperationCount;
unsigned long long ReadTransferCount;
unsigned long long WriteTransferCount;
unsigned long long OtherTransferCount;
};
#endif
#if defined(OS_MACOSX)
struct kinfo_proc;
#endif
namespace base {
// A minimalistic but hopefully cross-platform set of exit codes.
// Do not change the enumeration values or you will break third-party
// installers.
enum {
PROCESS_END_NORMAL_TERMINATON = 0,
PROCESS_END_KILLED_BY_USER = 1,
PROCESS_END_PROCESS_WAS_HUNG = 2
};
// Returns the id of the current process.
ProcessId GetCurrentProcId();
// Returns the ProcessHandle of the current process.
ProcessHandle GetCurrentProcessHandle();
// Converts a PID to a process handle. This handle must be closed by
// CloseProcessHandle when you are done with it. Returns true on success.
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle);
// Closes the process handle opened by OpenProcessHandle.
void CloseProcessHandle(ProcessHandle process);
// Returns the unique ID for the specified process. This is functionally the
// same as Windows' GetProcessId(), but works on versions of Windows before
// Win XP SP1 as well.
ProcessId GetProcId(ProcessHandle process);
#if defined(OS_POSIX)
// Sets all file descriptors to close on exec except for stdin, stdout
// and stderr.
void SetAllFDsToCloseOnExec();
#endif
#if defined(OS_WIN)
// Runs the given application name with the given command line. Normally, the
// first command line argument should be the path to the process, and don't
// forget to quote it.
//
// If wait is true, it will block and wait for the other process to finish,
// otherwise, it will just continue asynchronously.
//
// Example (including literal quotes)
// cmdline = "c:\windows\explorer.exe" -foo "c:\bar\"
//
// If process_handle is non-NULL, the process handle of the launched app will be
// stored there on a successful launch.
// NOTE: In this case, the caller is responsible for closing the handle so
// that it doesn't leak!
bool LaunchApp(const std::wstring& cmdline,
bool wait, bool start_hidden, ProcessHandle* process_handle);
#elif defined(OS_POSIX)
// Runs the application specified in argv[0] with the command line argv.
// Before launching all FDs open in the parent process will be marked as
// close-on-exec. |fds_to_remap| defines a mapping of src fd->dest fd to
// propagate FDs into the child process.
//
// As above, if wait is true, execute synchronously. The pid will be stored
// in process_handle if that pointer is non-null.
//
// Note that the first argument in argv must point to the filename,
// and must be fully specified.
typedef std::vector<std::pair<int, int> > file_handle_mapping_vector;
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle);
#endif
// Execute the application specified by cl. This function delegates to one
// of the above two platform-specific functions.
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden, ProcessHandle* process_handle);
// Used to filter processes by process ID.
class ProcessFilter {
public:
// Returns true to indicate set-inclusion and false otherwise. This method
// should not have side-effects and should be idempotent.
virtual bool Includes(ProcessId pid, ProcessId parent_pid) const = 0;
virtual ~ProcessFilter() { }
};
// Returns the number of processes on the machine that are running from the
// given executable name. If filter is non-null, then only processes selected
// by the filter will be counted.
int GetProcessCount(const std::wstring& executable_name,
const ProcessFilter* filter);
// Attempts to kill all the processes on the current machine that were launched
// from the given executable name, ending them with the given exit code. If
// filter is non-null, then only processes selected by the filter are killed.
// Returns false if all processes were able to be killed off, false if at least
// one couldn't be killed.
bool KillProcesses(const std::wstring& executable_name, int exit_code,
const ProcessFilter* filter);
// Attempts to kill the process identified by the given process
// entry structure, giving it the specified exit code. If |wait| is true, wait
// for the process to be actually terminated before returning.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process, int exit_code, bool wait);
#if defined(OS_WIN)
bool KillProcessById(ProcessId process_id, int exit_code, bool wait);
#endif
// Get the termination status (exit code) of the process and return true if the
// status indicates the process crashed. It is an error to call this if the
// process hasn't terminated yet.
bool DidProcessCrash(ProcessHandle handle);
// Waits for process to exit. In POSIX systems, if the process hasn't been
// signaled then puts the exit code in |exit_code|; otherwise it's considered
// a failure. On Windows |exit_code| is always filled. Returns true on success,
// and closes |handle| in any case.
bool WaitForExitCode(ProcessHandle handle, int* exit_code);
// Wait for all the processes based on the named executable to exit. If filter
// is non-null, then only processes selected by the filter are waited on.
// Returns after all processes have exited or wait_milliseconds have expired.
// Returns true if all the processes exited, false otherwise.
bool WaitForProcessesToExit(const std::wstring& executable_name,
int wait_milliseconds,
const ProcessFilter* filter);
// Wait for a single process to exit. Return true if it exited cleanly within
// the given time limit.
bool WaitForSingleProcess(ProcessHandle handle,
int wait_milliseconds);
// Returns true when |wait_milliseconds| have elapsed and the process
// is still running.
bool CrashAwareSleep(ProcessHandle handle, int wait_milliseconds);
// Waits a certain amount of time (can be 0) for all the processes with a given
// executable name to exit, then kills off any of them that are still around.
// If filter is non-null, then only processes selected by the filter are waited
// on. Killed processes are ended with the given exit code. Returns false if
// any processes needed to be killed, true if they all exited cleanly within
// the wait_milliseconds delay.
bool CleanupProcesses(const std::wstring& executable_name,
int wait_milliseconds,
int exit_code,
const ProcessFilter* filter);
// This class provides a way to iterate through the list of processes
// on the current machine that were started from the given executable
// name. To use, create an instance and then call NextProcessEntry()
// until it returns false.
class NamedProcessIterator {
public:
NamedProcessIterator(const std::wstring& executable_name,
const ProcessFilter* filter);
~NamedProcessIterator();
// If there's another process that matches the given executable name,
// returns a const pointer to the corresponding PROCESSENTRY32.
// If there are no more matching processes, returns NULL.
// The returned pointer will remain valid until NextProcessEntry()
// is called again or this NamedProcessIterator goes out of scope.
const ProcessEntry* NextProcessEntry();
private:
// Determines whether there's another process (regardless of executable)
// left in the list of all processes. Returns true and sets entry_ to
// that process's info if there is one, false otherwise.
bool CheckForNextProcess();
bool IncludeEntry();
// Initializes a PROCESSENTRY32 data structure so that it's ready for
// use with Process32First/Process32Next.
void InitProcessEntry(ProcessEntry* entry);
std::wstring executable_name_;
#if defined(OS_WIN)
HANDLE snapshot_;
bool started_iteration_;
#elif defined(OS_LINUX)
DIR *procfs_dir_;
#elif defined(OS_MACOSX)
std::vector<kinfo_proc> kinfo_procs_;
size_t index_of_kinfo_proc_;
#endif
ProcessEntry entry_;
const ProcessFilter* filter_;
DISALLOW_EVIL_CONSTRUCTORS(NamedProcessIterator);
};
// Working Set (resident) memory usage broken down by
// priv (private): These pages (kbytes) cannot be shared with any other process.
// shareable: These pages (kbytes) can be shared with other processes under
// the right circumstances.
// shared : These pages (kbytes) are currently shared with at least one
// other process.
struct WorkingSetKBytes {
size_t priv;
size_t shareable;
size_t shared;
};
// Committed (resident + paged) memory usage broken down by
// private: These pages cannot be shared with any other process.
// mapped: These pages are mapped into the view of a section (backed by
// pagefile.sys)
// image: These pages are mapped into the view of an image section (backed by
// file system)
struct CommittedKBytes {
size_t priv;
size_t mapped;
size_t image;
};
// Free memory (Megabytes marked as free) in the 2G process address space.
// total : total amount in megabytes marked as free. Maximum value is 2048.
// largest : size of the largest contiguous amount of memory found. It is
// always smaller or equal to FreeMBytes::total.
// largest_ptr: starting address of the largest memory block.
struct FreeMBytes {
size_t total;
size_t largest;
void* largest_ptr;
};
// Provides performance metrics for a specified process (CPU usage, memory and
// IO counters). To use it, invoke CreateProcessMetrics() to get an instance
// for a specific process, then access the information with the different get
// methods.
class ProcessMetrics {
public:
// Creates a ProcessMetrics for the specified process.
// The caller owns the returned object.
static ProcessMetrics* CreateProcessMetrics(ProcessHandle process);
~ProcessMetrics();
// Returns the current space allocated for the pagefile, in bytes (these pages
// may or may not be in memory).
size_t GetPagefileUsage() const;
// Returns the peak space allocated for the pagefile, in bytes.
size_t GetPeakPagefileUsage() const;
// Returns the current working set size, in bytes.
size_t GetWorkingSetSize() const;
// Returns private usage, in bytes. Private bytes is the amount
// of memory currently allocated to a process that cannot be shared.
// Note: returns 0 on unsupported OSes: prior to XP SP2.
size_t GetPrivateBytes() const;
// Fills a CommittedKBytes with both resident and paged
// memory usage as per definition of CommittedBytes.
void GetCommittedKBytes(CommittedKBytes* usage) const;
// Fills a WorkingSetKBytes containing resident private and shared memory
// usage in bytes, as per definition of WorkingSetBytes.
bool GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const;
// Computes the current process available memory for allocation.
// It does a linear scan of the address space querying each memory region
// for its free (unallocated) status. It is useful for estimating the memory
// load and fragmentation.
bool CalculateFreeMemory(FreeMBytes* free) const;
// Returns the CPU usage in percent since the last time this method was
// called. The first time this method is called it returns 0 and will return
// the actual CPU info on subsequent calls.
// Note that on multi-processor machines, the CPU usage value is for all
// CPUs. So if you have 2 CPUs and your process is using all the cycles
// of 1 CPU and not the other CPU, this method returns 50.
int GetCPUUsage();
// Retrieves accounting information for all I/O operations performed by the
// process.
// If IO information is retrieved successfully, the function returns true
// and fills in the IO_COUNTERS passed in. The function returns false
// otherwise.
bool GetIOCounters(IoCounters* io_counters) const;
private:
explicit ProcessMetrics(ProcessHandle process);
ProcessHandle process_;
int processor_count_;
// Used to store the previous times so we can compute the CPU usage.
int64 last_time_;
int64 last_system_time_;
DISALLOW_EVIL_CONSTRUCTORS(ProcessMetrics);
};
// Enables low fragmentation heap (LFH) for every heaps of this process. This
// won't have any effect on heaps created after this function call. It will not
// modify data allocated in the heaps before calling this function. So it is
// better to call this function early in initialization and again before
// entering the main loop.
// Note: Returns true on Windows 2000 without doing anything.
bool EnableLowFragmentationHeap();
// Enable 'terminate on heap corruption' flag. Helps protect against heap
// overflow. Has no effect if the OS doesn't provide the necessary facility.
void EnableTerminationOnHeapCorruption();
// If supported on the platform, and the user has sufficent rights, increase
// the current process's scheduling priority to a high priority.
void RaiseProcessToHighPriority();
} // namespace base
#endif // BASE_PROCESS_UTIL_H_
|