1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process_util.h"
#import <Cocoa/Cocoa.h>
#include <crt_externs.h>
#include <spawn.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <string>
#include "base/logging.h"
#include "base/string_util.h"
#include "base/time.h"
namespace base {
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle) {
bool retval = true;
char* argv_copy[argv.size() + 1];
for (size_t i = 0; i < argv.size(); i++) {
argv_copy[i] = const_cast<char*>(argv[i].c_str());
}
argv_copy[argv.size()] = NULL;
// Make sure we don't leak any FDs to the child process by marking all FDs
// as close-on-exec.
SetAllFDsToCloseOnExec();
posix_spawn_file_actions_t file_actions;
if (posix_spawn_file_actions_init(&file_actions) != 0) {
return false;
}
// Turn fds_to_remap array into a set of dup2 calls.
for (file_handle_mapping_vector::const_iterator it = fds_to_remap.begin();
it != fds_to_remap.end();
++it) {
int src_fd = it->first;
int dest_fd = it->second;
if (src_fd == dest_fd) {
int flags = fcntl(src_fd, F_GETFD);
if (flags != -1) {
fcntl(src_fd, F_SETFD, flags & ~FD_CLOEXEC);
}
} else {
if (posix_spawn_file_actions_adddup2(&file_actions, src_fd, dest_fd) != 0)
{
posix_spawn_file_actions_destroy(&file_actions);
return false;
}
}
}
int pid = 0;
int spawn_succeeded = (posix_spawnp(&pid,
argv_copy[0],
&file_actions,
NULL,
argv_copy,
*_NSGetEnviron()) == 0);
posix_spawn_file_actions_destroy(&file_actions);
bool process_handle_valid = pid > 0;
if (!spawn_succeeded || !process_handle_valid) {
retval = false;
} else {
if (wait)
waitpid(pid, 0, 0);
if (process_handle)
*process_handle = pid;
}
return retval;
}
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden, ProcessHandle* process_handle) {
// TODO(playmobil): Do we need to respect the start_hidden flag?
file_handle_mapping_vector no_files;
return LaunchApp(cl.argv(), no_files, wait, process_handle);
}
NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name,
const ProcessFilter* filter)
: executable_name_(executable_name),
index_of_kinfo_proc_(0),
filter_(filter) {
// Get a snapshot of all of my processes (yes, as we loop it can go stale, but
// but trying to find where we were in a constantly changing list is basically
// impossible.
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() };
// Since more processes could start between when we get the size and when
// we get the list, we do a loop to keep trying until we get it.
bool done = false;
int try_num = 1;
const int max_tries = 10;
do {
// Get the size of the buffer
size_t len = 0;
if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) {
LOG(ERROR) << "failed to get the size needed for the process list";
kinfo_procs_.resize(0);
done = true;
} else {
size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
// Leave some spare room for process table growth (more could show up
// between when we check and now)
num_of_kinfo_proc += 4;
kinfo_procs_.resize(num_of_kinfo_proc);
len = num_of_kinfo_proc * sizeof(struct kinfo_proc);
// Load the list of processes
if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) {
// If we get a mem error, it just means we need a bigger buffer, so
// loop around again. Anything else is a real error and give up.
if (errno != ENOMEM) {
LOG(ERROR) << "failed to get the process list";
kinfo_procs_.resize(0);
done = true;
}
} else {
// Got the list, just make sure we're sized exactly right
size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
kinfo_procs_.resize(num_of_kinfo_proc);
done = true;
}
}
} while (!done && (try_num++ < max_tries));
if (!done) {
LOG(ERROR) << "failed to collect the process list in a few tries";
kinfo_procs_.resize(0);
}
}
NamedProcessIterator::~NamedProcessIterator() {
}
const ProcessEntry* NamedProcessIterator::NextProcessEntry() {
bool result = false;
do {
result = CheckForNextProcess();
} while (result && !IncludeEntry());
if (result) {
return &entry_;
}
return NULL;
}
bool NamedProcessIterator::CheckForNextProcess() {
std::string executable_name_utf8(WideToUTF8(executable_name_));
std::string data;
std::string exec_name;
for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) {
kinfo_proc* kinfo = &kinfo_procs_[index_of_kinfo_proc_];
// Skip processes just awaiting collection
if ((kinfo->kp_proc.p_pid > 0) && (kinfo->kp_proc.p_stat == SZOMB))
continue;
int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo->kp_proc.p_pid };
// Found out what size buffer we need
size_t data_len = 0;
if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) {
LOG(ERROR) << "failed to figure out the buffer size for a commandline";
continue;
}
data.resize(data_len);
if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) {
LOG(ERROR) << "failed to fetch a commandline";
continue;
}
// Data starts w/ the full path null termed, so we have to extract just the
// executable name from the path.
size_t exec_name_end = data.find('\0');
if (exec_name_end == std::string::npos) {
LOG(ERROR) << "command line data didn't match expected format";
continue;
}
size_t last_slash = data.rfind('/', exec_name_end);
if (last_slash == std::string::npos)
exec_name = data.substr(0, exec_name_end);
else
exec_name = data.substr(last_slash + 1, exec_name_end - last_slash - 1);
// Check the name
if (executable_name_utf8 == exec_name) {
entry_.pid = kinfo->kp_proc.p_pid;
entry_.ppid = kinfo->kp_proc.p_oppid;
base::strlcpy(entry_.szExeFile, exec_name.c_str(),
sizeof(entry_.szExeFile));
// Start w/ the next entry next time through
++index_of_kinfo_proc_;
// Done
return true;
}
}
return false;
}
bool NamedProcessIterator::IncludeEntry() {
// Don't need to check the name, we did that w/in CheckForNextProcess.
if (!filter_)
return true;
return filter_->Includes(entry_.pid, entry_.ppid);
}
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) {
// TODO(pinkerton): can we implement this? On linux it relies on /proc.
NOTIMPLEMENTED();
return false;
}
} // namespace base
|