summaryrefslogtreecommitdiffstats
path: root/base/process_util_posix.cc
blob: 6ff660f8e59dfde762cc0daedcc9f2d286debc45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#include <limits>
#include <set>

#include "base/basictypes.h"
#include "base/eintr_wrapper.h"
#include "base/logging.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "base/scoped_ptr.h"
#include "base/sys_info.h"
#include "base/time.h"
#include "base/waitable_event.h"

const int kMicrosecondsPerSecond = 1000000;

namespace base {

ProcessId GetCurrentProcId() {
  return getpid();
}

ProcessHandle GetCurrentProcessHandle() {
  return GetCurrentProcId();
}

bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) {
  // On Posix platforms, process handles are the same as PIDs, so we
  // don't need to do anything.
  *handle = pid;
  return true;
}

bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) {
  // On POSIX permissions are checked for each operation on process,
  // not when opening a "handle".
  return OpenProcessHandle(pid, handle);
}

void CloseProcessHandle(ProcessHandle process) {
  // See OpenProcessHandle, nothing to do.
  return;
}

ProcessId GetProcId(ProcessHandle process) {
  return process;
}

// Attempts to kill the process identified by the given process
// entry structure.  Ignores specified exit_code; posix can't force that.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) {
  DCHECK(process_id > 1);
  if (process_id <= 1) {
    LOG(ERROR) << "tried to kill process_id " << process_id;
    return false;
  }

  bool result = kill(process_id, SIGTERM) == 0;

  if (result && wait) {
    int tries = 60;
    // The process may not end immediately due to pending I/O
    bool exited = false;
    while (tries-- > 0) {
      int pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG));
      if (pid == process_id) {
        exited = true;
        break;
      }

      sleep(1);
    }

    if (!exited) {
      result = kill(process_id, SIGKILL) == 0;
    }
  }

  if (!result) {
    DLOG(ERROR) << "Unable to terminate process " << process_id << "; error "
                << errno;
  }

  return result;
}

// A class to handle auto-closing of DIR*'s.
class ScopedDIRClose {
 public:
  inline void operator()(DIR* x) const {
    if (x) {
      closedir(x);
    }
  }
};
typedef scoped_ptr_malloc<DIR, ScopedDIRClose> ScopedDIR;

void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
#if defined(OS_LINUX)
  static const rlim_t kSystemDefaultMaxFds = 8192;
  static const char fd_dir[] = "/proc/self/fd";
#elif defined(OS_MACOSX)
  static const rlim_t kSystemDefaultMaxFds = 256;
  static const char fd_dir[] = "/dev/fd";
#endif
  std::set<int> saved_fds;

  // Get the maximum number of FDs possible.
  struct rlimit nofile;
  rlim_t max_fds;
  if (getrlimit(RLIMIT_NOFILE, &nofile)) {
    // getrlimit failed. Take a best guess.
    max_fds = kSystemDefaultMaxFds;
    DLOG(ERROR) << "getrlimit(RLIMIT_NOFILE) failed: " << errno;
  } else {
    max_fds = nofile.rlim_cur;
  }

  if (max_fds > INT_MAX)
    max_fds = INT_MAX;

  // Don't close stdin, stdout and stderr
  saved_fds.insert(STDIN_FILENO);
  saved_fds.insert(STDOUT_FILENO);
  saved_fds.insert(STDERR_FILENO);

  for (base::InjectiveMultimap::const_iterator
       i = saved_mapping.begin(); i != saved_mapping.end(); ++i) {
    saved_fds.insert(i->dest);
  }

  ScopedDIR dir_closer(opendir(fd_dir));
  DIR *dir = dir_closer.get();
  if (NULL == dir) {
    DLOG(ERROR) << "Unable to open " << fd_dir;

    // Fallback case: Try every possible fd.
    for (rlim_t i = 0; i < max_fds; ++i) {
      const int fd = static_cast<int>(i);
      if (saved_fds.find(fd) != saved_fds.end())
        continue;

      HANDLE_EINTR(close(fd));
    }
    return;
  }
  int dir_fd = dirfd(dir);

  struct dirent *ent;
  while ((ent = readdir(dir))) {
    // Skip . and .. entries.
    if (ent->d_name[0] == '.')
      continue;

    char *endptr;
    errno = 0;
    const long int fd = strtol(ent->d_name, &endptr, 10);
    if (ent->d_name[0] == 0 || *endptr || fd < 0 || errno)
      continue;
    if (saved_fds.find(fd) != saved_fds.end())
      continue;
    if (fd == dir_fd)
      continue;

    // When running under Valgrind, Valgrind opens several FDs for its
    // own use and will complain if we try to close them.  All of
    // these FDs are >= |max_fds|, so we can check against that here
    // before closing.  See https://bugs.kde.org/show_bug.cgi?id=191758
    if (fd < static_cast<int>(max_fds))
      HANDLE_EINTR(close(fd));
  }
}

// Sets all file descriptors to close on exec except for stdin, stdout
// and stderr.
// TODO(agl): Remove this function. It's fundamentally broken for multithreaded
// apps.
void SetAllFDsToCloseOnExec() {
#if defined(OS_LINUX)
  const char fd_dir[] = "/proc/self/fd";
#elif defined(OS_MACOSX)
  const char fd_dir[] = "/dev/fd";
#endif
  ScopedDIR dir_closer(opendir(fd_dir));
  DIR *dir = dir_closer.get();
  if (NULL == dir) {
    DLOG(ERROR) << "Unable to open " << fd_dir;
    return;
  }

  struct dirent *ent;
  while ((ent = readdir(dir))) {
    // Skip . and .. entries.
    if (ent->d_name[0] == '.')
      continue;
    int i = atoi(ent->d_name);
    // We don't close stdin, stdout or stderr.
    if (i <= STDERR_FILENO)
      continue;

    int flags = fcntl(i, F_GETFD);
    if ((flags == -1) || (fcntl(i, F_SETFD, flags | FD_CLOEXEC) == -1)) {
      DLOG(ERROR) << "fcntl failure.";
    }
  }
}

ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process),
                                                        last_time_(0),
                                                        last_system_time_(0) {
  processor_count_ = base::SysInfo::NumberOfProcessors();
}

// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
  return new ProcessMetrics(process);
}

ProcessMetrics::~ProcessMetrics() { }

void EnableTerminationOnHeapCorruption() {
  // On POSIX, there nothing to do AFAIK.
}

void RaiseProcessToHighPriority() {
  // On POSIX, we don't actually do anything here.  We could try to nice() or
  // setpriority() or sched_getscheduler, but these all require extra rights.
}

bool DidProcessCrash(bool* child_exited, ProcessHandle handle) {
  int status;
  const int result = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
  if (result == -1) {
    LOG(ERROR) << "waitpid failed pid:" << handle << " errno:" << errno;
    if (child_exited)
      *child_exited = false;
    return false;
  } else if (result == 0) {
    // the child hasn't exited yet.
    if (child_exited)
      *child_exited = false;
    return false;
  }

  if (child_exited)
    *child_exited = true;

  if (WIFSIGNALED(status)) {
    switch(WTERMSIG(status)) {
      case SIGSEGV:
      case SIGILL:
      case SIGABRT:
      case SIGFPE:
        return true;
      default:
        return false;
    }
  }

  if (WIFEXITED(status))
    return WEXITSTATUS(status) != 0;

  return false;
}

bool WaitForExitCode(ProcessHandle handle, int* exit_code) {
  int status;
  if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) {
    NOTREACHED();
    return false;
  }

  if (WIFEXITED(status)) {
    *exit_code = WEXITSTATUS(status);
    return true;
  }

  // If it didn't exit cleanly, it must have been signaled.
  DCHECK(WIFSIGNALED(status));
  return false;
}

namespace {

int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds,
                       bool* success) {
  // This POSIX version of this function only guarantees that we wait no less
  // than |wait_milliseconds| for the proces to exit.  The child process may
  // exit sometime before the timeout has ended but we may still block for
  // up to 0.25 seconds after the fact.
  //
  // waitpid() has no direct support on POSIX for specifying a timeout, you can
  // either ask it to block indefinitely or return immediately (WNOHANG).
  // When a child process terminates a SIGCHLD signal is sent to the parent.
  // Catching this signal would involve installing a signal handler which may
  // affect other parts of the application and would be difficult to debug.
  //
  // Our strategy is to call waitpid() once up front to check if the process
  // has already exited, otherwise to loop for wait_milliseconds, sleeping for
  // at most 0.25 secs each time using usleep() and then calling waitpid().
  //
  // usleep() is speced to exit if a signal is received for which a handler
  // has been installed.  This means that when a SIGCHLD is sent, it will exit
  // depending on behavior external to this function.
  //
  // This function is used primarily for unit tests, if we want to use it in
  // the application itself it would probably be best to examine other routes.
  int status = -1;
  pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
  static const int64 kQuarterSecondInMicroseconds = kMicrosecondsPerSecond/4;

  // If the process hasn't exited yet, then sleep and try again.
  Time wakeup_time = Time::Now() + TimeDelta::FromMilliseconds(
      wait_milliseconds);
  while (ret_pid == 0) {
    Time now = Time::Now();
    if (now > wakeup_time)
      break;
    // Guaranteed to be non-negative!
    int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds();
    // Don't sleep for more than 0.25 secs at a time.
    if (sleep_time_usecs > kQuarterSecondInMicroseconds) {
      sleep_time_usecs = kQuarterSecondInMicroseconds;
    }

    // usleep() will return 0 and set errno to EINTR on receipt of a signal
    // such as SIGCHLD.
    usleep(sleep_time_usecs);
    ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
  }

  if (success)
    *success = (ret_pid != -1);

  return status;
}

}  // namespace

bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) {
  bool waitpid_success;
  int status;
  if (wait_milliseconds == base::kNoTimeout)
    waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1);
  else
    status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success);
  if (status != -1) {
    DCHECK(waitpid_success);
    return WIFEXITED(status);
  } else {
    return false;
  }
}

bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds) {
  bool waitpid_success;
  int status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success);
  if (status != -1) {
    DCHECK(waitpid_success);
    return !(WIFEXITED(status) || WIFSIGNALED(status));
  } else {
    // If waitpid returned with an error, then the process doesn't exist
    // (which most probably means it didn't exist before our call).
    return waitpid_success;
  }
}

namespace {

int64 TimeValToMicroseconds(const struct timeval& tv) {
  return tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec;
}

}

int ProcessMetrics::GetCPUUsage() {
  struct timeval now;
  struct rusage usage;

  int retval = gettimeofday(&now, NULL);
  if (retval)
    return 0;
  retval = getrusage(RUSAGE_SELF, &usage);
  if (retval)
    return 0;

  int64 system_time = (TimeValToMicroseconds(usage.ru_stime) +
                       TimeValToMicroseconds(usage.ru_utime)) /
                        processor_count_;
  int64 time = TimeValToMicroseconds(now);

  if ((last_system_time_ == 0) || (last_time_ == 0)) {
    // First call, just set the last values.
    last_system_time_ = system_time;
    last_time_ = time;
    return 0;
  }

  int64 system_time_delta = system_time - last_system_time_;
  int64 time_delta = time - last_time_;
  DCHECK(time_delta != 0);
  if (time_delta == 0)
    return 0;

  // We add time_delta / 2 so the result is rounded.
  int cpu = static_cast<int>((system_time_delta * 100 + time_delta / 2) /
                             time_delta);

  last_system_time_ = system_time;
  last_time_ = time;

  return cpu;
}

bool GetAppOutput(const CommandLine& cl, std::string* output) {
  int pipe_fd[2];
  pid_t pid;

  if (pipe(pipe_fd) < 0)
    return false;

  switch (pid = fork()) {
    case -1:  // error
      close(pipe_fd[0]);
      close(pipe_fd[1]);
      return false;
    case 0:  // child
      {
        // Obscure fork() rule: in the child, if you don't end up doing exec*(),
        // you call _exit() instead of exit(). This is because _exit() does not
        // call any previously-registered (in the parent) exit handlers, which
        // might do things like block waiting for threads that don't even exist
        // in the child.
        int dev_null = open("/dev/null", O_WRONLY);
        if (dev_null < 0)
          _exit(127);

        InjectiveMultimap fd_shuffle;
        fd_shuffle.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
        fd_shuffle.push_back(InjectionArc(dev_null, STDERR_FILENO, true));
        fd_shuffle.push_back(InjectionArc(dev_null, STDIN_FILENO, true));

        if (!ShuffleFileDescriptors(fd_shuffle))
          _exit(127);

        CloseSuperfluousFds(fd_shuffle);

        const std::vector<std::string> argv = cl.argv();
        scoped_array<char*> argv_cstr(new char*[argv.size() + 1]);
        for (size_t i = 0; i < argv.size(); i++)
          argv_cstr[i] = const_cast<char*>(argv[i].c_str());
        argv_cstr[argv.size()] = NULL;
        execvp(argv_cstr[0], argv_cstr.get());
        _exit(127);
      }
    default:  // parent
      {
        // Close our writing end of pipe now. Otherwise later read would not
        // be able to detect end of child's output (in theory we could still
        // write to the pipe).
        close(pipe_fd[1]);

        char buffer[256];
        std::string buf_output;

        while (true) {
          ssize_t bytes_read =
              HANDLE_EINTR(read(pipe_fd[0], buffer, sizeof(buffer)));
          if (bytes_read <= 0)
            break;
          buf_output.append(buffer, bytes_read);
        }
        close(pipe_fd[0]);

        int exit_code = EXIT_FAILURE;
        bool success = WaitForExitCode(pid, &exit_code);
        if (!success || exit_code != EXIT_SUCCESS)
          return false;

        output->swap(buf_output);
        return true;
      }
  }
}

int GetProcessCount(const std::wstring& executable_name,
                    const ProcessFilter* filter) {
  int count = 0;

  NamedProcessIterator iter(executable_name, filter);
  while (iter.NextProcessEntry())
    ++count;
  return count;
}

bool KillProcesses(const std::wstring& executable_name, int exit_code,
                   const ProcessFilter* filter) {
  bool result = true;
  const ProcessEntry* entry;

  NamedProcessIterator iter(executable_name, filter);
  while ((entry = iter.NextProcessEntry()) != NULL)
    result = KillProcess((*entry).pid, exit_code, true) && result;

  return result;
}

bool WaitForProcessesToExit(const std::wstring& executable_name,
                            int64 wait_milliseconds,
                            const ProcessFilter* filter) {
  bool result = false;

  // TODO(port): This is inefficient, but works if there are multiple procs.
  // TODO(port): use waitpid to avoid leaving zombies around

  base::Time end_time = base::Time::Now() +
      base::TimeDelta::FromMilliseconds(wait_milliseconds);
  do {
    NamedProcessIterator iter(executable_name, filter);
    if (!iter.NextProcessEntry()) {
      result = true;
      break;
    }
    PlatformThread::Sleep(100);
  } while ((base::Time::Now() - end_time) > base::TimeDelta());

  return result;
}

bool CleanupProcesses(const std::wstring& executable_name,
                      int64 wait_milliseconds,
                      int exit_code,
                      const ProcessFilter* filter) {
  bool exited_cleanly =
      WaitForProcessesToExit(executable_name, wait_milliseconds,
                             filter);
  if (!exited_cleanly)
    KillProcesses(executable_name, exit_code, filter);
  return exited_cleanly;
}

}  // namespace base