summaryrefslogtreecommitdiffstats
path: root/base/strings/utf_string_conversion_utils.cc
blob: 09a003d1b9cedc509e9fb8ec86371c5a2e0aa31f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/strings/utf_string_conversion_utils.h"

#include "base/third_party/icu/icu_utf.h"

namespace base {

// ReadUnicodeCharacter --------------------------------------------------------

bool ReadUnicodeCharacter(const char* src,
                          int32 src_len,
                          int32* char_index,
                          uint32* code_point_out) {
  // U8_NEXT expects to be able to use -1 to signal an error, so we must
  // use a signed type for code_point.  But this function returns false
  // on error anyway, so code_point_out is unsigned.
  int32 code_point;
  CBU8_NEXT(src, *char_index, src_len, code_point);
  *code_point_out = static_cast<uint32>(code_point);

  // The ICU macro above moves to the next char, we want to point to the last
  // char consumed.
  (*char_index)--;

  // Validate the decoded value.
  return IsValidCodepoint(code_point);
}

bool ReadUnicodeCharacter(const char16* src,
                          int32 src_len,
                          int32* char_index,
                          uint32* code_point) {
  if (CBU16_IS_SURROGATE(src[*char_index])) {
    if (!CBU16_IS_SURROGATE_LEAD(src[*char_index]) ||
        *char_index + 1 >= src_len ||
        !CBU16_IS_TRAIL(src[*char_index + 1])) {
      // Invalid surrogate pair.
      return false;
    }

    // Valid surrogate pair.
    *code_point = CBU16_GET_SUPPLEMENTARY(src[*char_index],
                                          src[*char_index + 1]);
    (*char_index)++;
  } else {
    // Not a surrogate, just one 16-bit word.
    *code_point = src[*char_index];
  }

  return IsValidCodepoint(*code_point);
}

#if defined(WCHAR_T_IS_UTF32)
bool ReadUnicodeCharacter(const wchar_t* src,
                          int32 src_len,
                          int32* char_index,
                          uint32* code_point) {
  // Conversion is easy since the source is 32-bit.
  *code_point = src[*char_index];

  // Validate the value.
  return IsValidCodepoint(*code_point);
}
#endif  // defined(WCHAR_T_IS_UTF32)

// WriteUnicodeCharacter -------------------------------------------------------

size_t WriteUnicodeCharacter(uint32 code_point, std::string* output) {
  if (code_point <= 0x7f) {
    // Fast path the common case of one byte.
    output->push_back(code_point);
    return 1;
  }


  // CBU8_APPEND_UNSAFE can append up to 4 bytes.
  size_t char_offset = output->length();
  size_t original_char_offset = char_offset;
  output->resize(char_offset + CBU8_MAX_LENGTH);

  CBU8_APPEND_UNSAFE(&(*output)[0], char_offset, code_point);

  // CBU8_APPEND_UNSAFE will advance our pointer past the inserted character, so
  // it will represent the new length of the string.
  output->resize(char_offset);
  return char_offset - original_char_offset;
}

size_t WriteUnicodeCharacter(uint32 code_point, string16* output) {
  if (CBU16_LENGTH(code_point) == 1) {
    // Thie code point is in the Basic Multilingual Plane (BMP).
    output->push_back(static_cast<char16>(code_point));
    return 1;
  }
  // Non-BMP characters use a double-character encoding.
  size_t char_offset = output->length();
  output->resize(char_offset + CBU16_MAX_LENGTH);
  CBU16_APPEND_UNSAFE(&(*output)[0], char_offset, code_point);
  return CBU16_MAX_LENGTH;
}

// Generalized Unicode converter -----------------------------------------------

template<typename CHAR>
void PrepareForUTF8Output(const CHAR* src,
                          size_t src_len,
                          std::string* output) {
  output->clear();
  if (src_len == 0)
    return;
  if (src[0] < 0x80) {
    // Assume that the entire input will be ASCII.
    output->reserve(src_len);
  } else {
    // Assume that the entire input is non-ASCII and will have 3 bytes per char.
    output->reserve(src_len * 3);
  }
}

// Instantiate versions we know callers will need.
template void PrepareForUTF8Output(const wchar_t*, size_t, std::string*);
template void PrepareForUTF8Output(const char16*, size_t, std::string*);

template<typename STRING>
void PrepareForUTF16Or32Output(const char* src,
                               size_t src_len,
                               STRING* output) {
  output->clear();
  if (src_len == 0)
    return;
  if (static_cast<unsigned char>(src[0]) < 0x80) {
    // Assume the input is all ASCII, which means 1:1 correspondence.
    output->reserve(src_len);
  } else {
    // Otherwise assume that the UTF-8 sequences will have 2 bytes for each
    // character.
    output->reserve(src_len / 2);
  }
}

// Instantiate versions we know callers will need.
template void PrepareForUTF16Or32Output(const char*, size_t, std::wstring*);
template void PrepareForUTF16Or32Output(const char*, size_t, string16*);

}  // namespace base