1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
|
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef BASE_TASK_H__
#define BASE_TASK_H__
#include <set>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/non_thread_safe.h"
#include "base/revocable_store.h"
#include "base/tracked.h"
#include "base/tuple.h"
//------------------------------------------------------------------------------
// Base class of Task, where we store info to help MessageLoop handle PostTask()
// elements of Task processing.
class Task;
class MessageLoopOwnable : public tracked_objects::Tracked {
public:
MessageLoopOwnable() { Reset(); }
virtual ~MessageLoopOwnable() {}
// Use this method to adjust the priority given to a task by MessageLoop.
void set_priority(int priority) { priority_ = priority; }
int priority() const { return priority_; }
// Change whether this task will run in nested message loops.
void set_nestable(bool nestable) { nestable_ = nestable; }
bool nestable() { return nestable_; }
protected:
// If a derived class wishes to re-use this instance, then it should override
// this method. This method is called by MessageLoop after processing a task
// that was submitted to PostTask() or PostDelayedTask(). As seen, by default
// it deletes the task, but the derived class can change this behaviour and
// recycle (re-use) it. Be sure to call Reset() if you recycle it!
virtual void RecycleOrDelete() { delete this; }
// Call this method if you are trying to recycle a Task. Note that only
// derived classes should attempt this feat, as a replacement for creating a
// new instance.
void Reset() {
posted_task_delay_ = -1;
priority_ = 0;
next_task_ = NULL;
nestable_ = true;
}
private:
friend class TimerManager; // To check is_owned_by_message_loop().
friend class MessageLoop; // To maintain posted_task_delay().
friend class WorkerPool; // To release the task.
// Access methods used ONLY by friends in MessageLoop and TimerManager
int posted_task_delay() const { return posted_task_delay_; }
bool is_owned_by_message_loop() const { return 0 <= posted_task_delay_; }
void set_posted_task_delay(int delay) { posted_task_delay_ = delay; }
Task* next_task() const { return next_task_; }
void set_next_task(Task* next) { next_task_ = next; }
// Priority for execution by MessageLoop. 0 is default. Higher means run
// sooner, and lower (including negative) means run less soon.
int priority_;
// Slot to hold delay if the task was passed to PostTask(). If it was not
// passed to PostTask, then the delay is negative (the default).
int posted_task_delay_;
// When tasks are collected into a queue by MessageLoop, this member is used
// to form a null terminated list.
Task* next_task_;
// A nestable task will run in nested message loops, otherwise it will run
// only in the top level message loop.
bool nestable_;
DISALLOW_EVIL_CONSTRUCTORS(MessageLoopOwnable);
};
// Task ------------------------------------------------------------------------
//
// A task is a generic runnable thingy, usually used for running code on a
// different thread or for scheduling future tasks off of the message loop.
class Task : public MessageLoopOwnable {
public:
Task() {}
virtual ~Task() {}
// Tasks are automatically deleted after Run is called.
virtual void Run() = 0;
};
class CancelableTask : public Task {
public:
// Not all tasks support cancellation.
virtual void Cancel() = 0;
};
// Scoped Factories ------------------------------------------------------------
//
// These scoped factory objects can be used by non-refcounted objects to safely
// place tasks in a message loop. Each factory guarantees that the tasks it
// produces will not run after the factory is destroyed. Commonly, factories
// are declared as class members, so the class' tasks will automatically cancel
// when the class instance is destroyed.
//
// Exampe Usage:
//
// class MyClass {
// private:
// // This factory will be used to schedule invocations of SomeMethod.
// ScopedRunnableMethodFactory<MyClass> some_method_factory_;
//
// public:
// // It is safe to suppress warning 4355 here.
// MyClass() : some_method_factory_(this) { }
//
// void SomeMethod() {
// // If this function might be called directly, you might want to revoke
// // any outstanding runnable methods scheduled to call it. If it's not
// // referenced other than by the factory, this is unnecessary.
// some_method_factory_.RevokeAll();
// ...
// }
//
// void ScheduleSomeMethod() {
// // If you'd like to only only have one pending task at a time, test for
// // |empty| before manufacturing another task.
// if (!some_method_factory_.empty())
// return;
//
// // The factories are not thread safe, so always invoke on
// // |MessageLoop::current()|.
// MessageLoop::current()->PostTask(FROM_HERE,
// some_method_factory_.NewRunnableMethod(&MyClass::SomeMethod),
// kSomeMethodDelayMS);
// }
// };
// A ScopedTaskFactory produces tasks of type |TaskType| and prevents them from
// running after it is destroyed.
template<class TaskType>
class ScopedTaskFactory : public RevocableStore {
public:
ScopedTaskFactory() { }
// Create a new task.
inline TaskType* NewTask() {
return new TaskWrapper(this);
}
class TaskWrapper : public TaskType, public NonThreadSafe {
public:
explicit TaskWrapper(RevocableStore* store) : revocable_(store) { }
virtual void Run() {
if (!revocable_.revoked())
TaskType::Run();
}
private:
Revocable revocable_;
DISALLOW_EVIL_CONSTRUCTORS(TaskWrapper);
};
private:
DISALLOW_EVIL_CONSTRUCTORS(ScopedTaskFactory);
};
// A ScopedRunnableMethodFactory creates runnable methods for a specified
// object. This is particularly useful for generating callbacks for
// non-reference counted objects when the factory is a member of the object.
template<class T>
class ScopedRunnableMethodFactory : public RevocableStore {
public:
explicit ScopedRunnableMethodFactory(T* object) : object_(object) { }
template <class Method>
inline Task* NewRunnableMethod(Method method) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple0> >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple());
return task;
}
template <class Method, class A>
inline Task* NewRunnableMethod(Method method, const A& a) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple1<A> > >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple(a));
return task;
}
template <class Method, class A, class B>
inline Task* NewRunnableMethod(Method method, const A& a, const B& b) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple2<A, B> > >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple(a, b));
return task;
}
template <class Method, class A, class B, class C>
inline Task* NewRunnableMethod(Method method,
const A& a,
const B& b,
const C& c) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple3<A, B, C> > >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple(a, b, c));
return task;
}
template <class Method, class A, class B, class C, class D>
inline Task* NewRunnableMethod(Method method,
const A& a,
const B& b,
const C& c,
const D& d) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple4<A, B, C, D> > >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple(a, b, c, d));
return task;
}
template <class Method, class A, class B, class C, class D, class E>
inline Task* NewRunnableMethod(Method method,
const A& a,
const B& b,
const C& c,
const D& d,
const E& e) {
typedef typename ScopedTaskFactory<RunnableMethod<
Method, Tuple5<A, B, C, D, E> > >::TaskWrapper TaskWrapper;
TaskWrapper* task = new TaskWrapper(this);
task->Init(object_, method, MakeTuple(a, b, c, d, e));
return task;
}
protected:
template <class Method, class Params>
class RunnableMethod : public Task {
public:
RunnableMethod() { }
void Init(T* obj, Method meth, const Params& params) {
obj_ = obj;
meth_ = meth;
params_ = params;
}
virtual void Run() { DispatchToMethod(obj_, meth_, params_); }
private:
T* obj_;
Method meth_;
Params params_;
DISALLOW_EVIL_CONSTRUCTORS(RunnableMethod);
};
private:
T* object_;
DISALLOW_EVIL_CONSTRUCTORS(ScopedRunnableMethodFactory);
};
// General task implementations ------------------------------------------------
// Task to delete an object
template<class T>
class DeleteTask : public CancelableTask {
public:
explicit DeleteTask(T* obj) : obj_(obj) {
set_nestable(false);
}
virtual void Run() {
delete obj_;
}
virtual void Cancel() {
obj_ = NULL;
}
private:
T* obj_;
};
// Task to Release() an object
template<class T>
class ReleaseTask : public CancelableTask {
public:
explicit ReleaseTask(T* obj) : obj_(obj) {
set_nestable(false);
}
virtual void Run() {
if (obj_)
obj_->Release();
}
virtual void Cancel() {
obj_ = NULL;
}
private:
T* obj_;
};
// RunnableMethodTraits --------------------------------------------------------
//
// This traits-class is used by RunnableMethod to manage the lifetime of the
// callee object. By default, it is assumed that the callee supports AddRef
// and Release methods. A particular class can specialize this template to
// define other lifetime management. For example, if the callee is known to
// live longer than the RunnableMethod object, then a RunnableMethodTraits
// struct could be defined with empty RetainCallee and ReleaseCallee methods.
template <class T>
struct RunnableMethodTraits {
static void RetainCallee(T* obj) {
obj->AddRef();
}
static void ReleaseCallee(T* obj) {
obj->Release();
}
};
// RunnableMethod and RunnableFunction -----------------------------------------
//
// Runnable methods are a type of task that call a function on an object when
// they are run. We implement both an object and a set of NewRunnableMethod and
// NewRunnableFunction functions for convenience. These functions are
// overloaded and will infer the template types, simplifying calling code.
//
// The template definitions all use the following names:
// T - the class type of the object you're supplying
// this is not needed for the Static version of the call
// Method/Function - the signature of a pointer to the method or function you
// want to call
// Param - the parameter(s) to the method, possibly packed as a Tuple
// A - the first parameter (if any) to the method
// B - the second parameter (if any) to the mathod
//
// Put these all together and you get an object that can call a method whose
// signature is:
// R T::MyFunction([A[, B]])
//
// Usage:
// PostTask(FROM_HERE, NewRunnableMethod(object, &Object::method[, a[, b]])
// PostTask(FROM_HERE, NewRunnableFunction(&function[, a[, b]])
// RunnableMethod and NewRunnableMethod implementation -------------------------
template <class T, class Method, class Params>
class RunnableMethod : public CancelableTask,
public RunnableMethodTraits<T> {
public:
RunnableMethod(T* obj, Method meth, const Params& params)
: obj_(obj), meth_(meth), params_(params) {
RetainCallee(obj_);
}
~RunnableMethod() {
ReleaseCallee();
}
virtual void Run() {
if (obj_)
DispatchToMethod(obj_, meth_, params_);
}
virtual void Cancel() {
ReleaseCallee();
}
private:
void ReleaseCallee() {
if (obj_) {
RunnableMethodTraits<T>::ReleaseCallee(obj_);
obj_ = NULL;
}
}
T* obj_;
Method meth_;
Params params_;
};
template <class T, class Method>
inline CancelableTask* NewRunnableMethod(T* object, Method method) {
return new RunnableMethod<T, Method, Tuple0>(object, method, MakeTuple());
}
template <class T, class Method, class A>
inline CancelableTask* NewRunnableMethod(T* object, Method method, const A& a) {
return new RunnableMethod<T, Method, Tuple1<A> >(object, method, MakeTuple(a));
}
template <class T, class Method, class A, class B>
inline CancelableTask* NewRunnableMethod(T* object, Method method,
const A& a, const B& b) {
return new RunnableMethod<T, Method, Tuple2<A, B> >(object, method,
MakeTuple(a, b));
}
template <class T, class Method, class A, class B, class C>
inline CancelableTask* NewRunnableMethod(T* object, Method method,
const A& a, const B& b, const C& c) {
return new RunnableMethod<T, Method, Tuple3<A, B, C> >(object, method,
MakeTuple(a, b, c));
}
template <class T, class Method, class A, class B, class C, class D>
inline CancelableTask* NewRunnableMethod(T* object, Method method,
const A& a, const B& b,
const C& c, const D& d) {
return new RunnableMethod<T, Method, Tuple4<A, B, C, D> >(object, method,
MakeTuple(a, b,
c, d));
}
template <class T, class Method, class A, class B, class C, class D, class E>
inline CancelableTask* NewRunnableMethod(T* object, Method method,
const A& a, const B& b,
const C& c, const D& d, const E& e) {
return new RunnableMethod<T,
Method,
Tuple5<A, B, C, D, E> >(object,
method,
MakeTuple(a, b, c, d, e));
}
// RunnableFunction and NewRunnableFunction implementation ---------------------
template <class Function, class Params>
class RunnableFunction : public CancelableTask {
public:
RunnableFunction(Function function, const Params& params)
: function_(function), params_(params) {
}
~RunnableFunction() {
}
virtual void Run() {
if (function_)
DispatchToFunction(function_, params_);
}
virtual void Cancel() {
}
private:
Function function_;
Params params_;
};
template <class Function>
inline CancelableTask* NewRunnableFunction(Function function) {
return new RunnableFunction<Function, Tuple0>(function, MakeTuple());
}
template <class Function, class A>
inline CancelableTask* NewRunnableFunction(Function function, const A& a) {
return new RunnableFunction<Function, Tuple1<A> >(function, MakeTuple(a));
}
template <class Function, class A, class B>
inline CancelableTask* NewRunnableFunction(Function function,
const A& a, const B& b) {
return new RunnableFunction<Function, Tuple2<A, B> >(function, MakeTuple(a, b));
}
template <class Function, class A, class B, class C>
inline CancelableTask* NewRunnableFunction(Function function,
const A& a, const B& b,
const C& c) {
return new RunnableFunction<Function, Tuple3<A, B, C> >(function,
MakeTuple(a, b, c));
}
template <class Function, class A, class B, class C, class D>
inline CancelableTask* NewRunnableFunction(Function function,
const A& a, const B& b,
const C& c, const D& d) {
return new RunnableFunction<Function, Tuple4<A, B, C, D> >(function,
MakeTuple(a, b,
c, d));
}
template <class Function, class A, class B, class C, class D, class E>
inline CancelableTask* NewRunnableFunction(Function function,
const A& a, const B& b,
const C& c, const D& d,
const E& e) {
return new RunnableFunction<Function, Tuple5<A, B, C, D, E> >(function,
MakeTuple(a, b,
c, d,
e));
}
// Callback --------------------------------------------------------------------
//
// A Callback is like a Task but with unbound parameters. It is basically an
// object-oriented function pointer.
//
// Callbacks are designed to work with Tuples. A set of helper functions and
// classes is provided to hide the Tuple details from the consumer. Client
// code will generally work with the CallbackRunner base class, which merely
// provides a Run method and is returned by the New* functions. This allows
// users to not care which type of class implements the callback, only that it
// has a certain number and type of arguments.
//
// The implementation of this is done by CallbackImpl, which inherits
// CallbackStorage to store the data. This allows the storage of the data
// (requiring the class type T) to be hidden from users, who will want to call
// this regardless of the implementor's type T.
//
// Note that callbacks currently have no facility for cancelling or abandoning
// them. We currently handle this at a higher level for cases where this is
// necessary. The pointer in a callback must remain valid until the callback
// is made.
//
// Like Task, the callback executor is responsible for deleting the callback
// pointer once the callback has executed.
//
// Example client usage:
// void Object::DoStuff(int, string);
// Callback2<int, string>::Type* callback =
// NewCallback(obj, &Object::DoStuff);
// callback->Run(5, string("hello"));
// delete callback;
// or, equivalently, using tuples directly:
// CallbackRunner<Tuple2<int, string> >* callback =
// NewCallback(obj, &Object::DoStuff);
// callback->RunWithParams(MakeTuple(5, string("hello")));
// Base for all Callbacks that handles storage of the pointers.
template <class T, typename Method>
class CallbackStorage {
public:
CallbackStorage(T* obj, Method meth) : obj_(obj), meth_(meth) {
}
protected:
T* obj_;
Method meth_;
};
// Interface that is exposed to the consumer, that does the actual calling
// of the method.
template <typename Params>
class CallbackRunner {
public:
typedef Params TupleType;
virtual ~CallbackRunner() {}
virtual void RunWithParams(const Params& params) = 0;
// Convenience functions so callers don't have to deal with Tuples.
inline void Run() {
RunWithParams(Tuple0());
}
template <typename Arg1>
inline void Run(const Arg1& a) {
RunWithParams(Params(a));
}
template <typename Arg1, typename Arg2>
inline void Run(const Arg1& a, const Arg2& b) {
RunWithParams(Params(a, b));
}
template <typename Arg1, typename Arg2, typename Arg3>
inline void Run(const Arg1& a, const Arg2& b, const Arg3& c) {
RunWithParams(Params(a, b, c));
}
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4>
inline void Run(const Arg1& a, const Arg2& b, const Arg3& c, const Arg4& d) {
RunWithParams(Params(a, b, c, d));
}
template <typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
inline void Run(const Arg1& a, const Arg2& b, const Arg3& c,
const Arg4& d, const Arg5& e) {
RunWithParams(Params(a, b, c, d, e));
}
};
template <class T, typename Method, typename Params>
class CallbackImpl : public CallbackStorage<T, Method>,
public CallbackRunner<Params> {
public:
CallbackImpl(T* obj, Method meth) : CallbackStorage<T, Method>(obj, meth) {
}
virtual void RunWithParams(const Params& params) {
// use "this->" to force C++ to look inside our templatized base class; see
// Effective C++, 3rd Ed, item 43, p210 for details.
DispatchToMethod(this->obj_, this->meth_, params);
}
};
// 0-arg implementation
struct Callback0 {
typedef CallbackRunner<Tuple0> Type;
};
template <class T>
typename Callback0::Type* NewCallback(T* object, void (T::*method)()) {
return new CallbackImpl<T, void (T::*)(), Tuple0 >(object, method);
}
// 1-arg implementation
template <typename Arg1>
struct Callback1 {
typedef CallbackRunner<Tuple1<Arg1> > Type;
};
template <class T, typename Arg1>
typename Callback1<Arg1>::Type* NewCallback(T* object, void (T::*method)(Arg1)) {
return new CallbackImpl<T, void (T::*)(Arg1), Tuple1<Arg1> >(object, method);
}
// 2-arg implementation
template <typename Arg1, typename Arg2>
struct Callback2 {
typedef CallbackRunner<Tuple2<Arg1, Arg2> > Type;
};
template <class T, typename Arg1, typename Arg2>
typename Callback2<Arg1, Arg2>::Type* NewCallback(
T* object,
void (T::*method)(Arg1, Arg2)) {
return new CallbackImpl<T, void (T::*)(Arg1, Arg2),
Tuple2<Arg1, Arg2> >(object, method);
}
// 3-arg implementation
template <typename Arg1, typename Arg2, typename Arg3>
struct Callback3 {
typedef CallbackRunner<Tuple3<Arg1, Arg2, Arg3> > Type;
};
template <class T, typename Arg1, typename Arg2, typename Arg3>
typename Callback3<Arg1, Arg2, Arg3>::Type* NewCallback(
T* object,
void (T::*method)(Arg1, Arg2, Arg3)) {
return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3),
Tuple3<Arg1, Arg2, Arg3> >(object, method);
}
// 4-arg implementation
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4>
struct Callback4 {
typedef CallbackRunner<Tuple4<Arg1, Arg2, Arg3, Arg4> > Type;
};
template <class T, typename Arg1, typename Arg2, typename Arg3, typename Arg4>
typename Callback4<Arg1, Arg2, Arg3, Arg4>::Type* NewCallback(
T* object,
void (T::*method)(Arg1, Arg2, Arg3, Arg4)) {
return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4),
Tuple4<Arg1, Arg2, Arg3, Arg4> >(object, method);
}
// 5-arg implementation
template <typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
struct Callback5 {
typedef CallbackRunner<Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> > Type;
};
template <class T, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
typename Callback5<Arg1, Arg2, Arg3, Arg4, Arg5>::Type* NewCallback(
T* object,
void (T::*method)(Arg1, Arg2, Arg3, Arg4, Arg5)) {
return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4, Arg5),
Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> >(object, method);
}
#endif // BASE_TASK_H__
|