summaryrefslogtreecommitdiffstats
path: root/base/time_win.cc
blob: 0174a90363c77a264083d332a5804176b388626c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


// Windows Timer Primer
//
// A good article:  http://www.ddj.com/windows/184416651
// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
//
// The default windows timer, GetSystemTimeAsFileTime is not very precise.
// It is only good to ~15.5ms.
//
// QueryPerformanceCounter is the logical choice for a high-precision timer.
// However, it is known to be buggy on some hardware.  Specifically, it can
// sometimes "jump".  On laptops, QPC can also be very expensive to call.
// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
// on laptops.  A unittest exists which will show the relative cost of various
// timers on any system.
//
// The next logical choice is timeGetTime().  timeGetTime has a precision of
// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
// applications on the system.  By default, precision is only 15.5ms.
// Unfortunately, we don't want to call timeBeginPeriod because we don't
// want to affect other applications.  Further, on mobile platforms, use of
// faster multimedia timers can hurt battery life.  See the intel
// article about this here:
// http://softwarecommunity.intel.com/articles/eng/1086.htm
//
// To work around all this, we're going to generally use timeGetTime().  We
// will only increase the system-wide timer if we're not running on battery
// power.  Using timeBeginPeriod(1) is a requirement in order to make our
// message loop waits have the same resolution that our time measurements
// do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
// there is nothing else to waken the Wait.

#include "base/time.h"

#pragma comment(lib, "winmm.lib")
#include <windows.h>
#include <mmsystem.h>

#include "base/basictypes.h"
#include "base/lock.h"
#include "base/logging.h"
#include "base/cpu.h"
#include "base/singleton.h"
#include "base/system_monitor.h"

using base::Time;
using base::TimeDelta;
using base::TimeTicks;

namespace {

// From MSDN, FILETIME "Contains a 64-bit value representing the number of
// 100-nanosecond intervals since January 1, 1601 (UTC)."
int64 FileTimeToMicroseconds(const FILETIME& ft) {
  // Need to bit_cast to fix alignment, then divide by 10 to convert
  // 100-nanoseconds to milliseconds. This only works on little-endian
  // machines.
  return bit_cast<int64, FILETIME>(ft) / 10;
}

void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
  DCHECK(us >= 0) << "Time is less than 0, negative values are not "
      "representable in FILETIME";

  // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
  // handle alignment problems. This only works on little-endian machines.
  *ft = bit_cast<FILETIME, int64>(us * 10);
}

int64 CurrentWallclockMicroseconds() {
  FILETIME ft;
  ::GetSystemTimeAsFileTime(&ft);
  return FileTimeToMicroseconds(ft);
}

// Time between resampling the un-granular clock for this API.  60 seconds.
const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;

int64 initial_time = 0;
TimeTicks initial_ticks;

void InitializeClock() {
  initial_ticks = TimeTicks::Now();
  initial_time = CurrentWallclockMicroseconds();
}

}  // namespace

// Time -----------------------------------------------------------------------

// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
// 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
// 1700, 1800, and 1900.
// static
const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);

// static
Time Time::Now() {
  if (initial_time == 0)
    InitializeClock();

  // We implement time using the high-resolution timers so that we can get
  // timeouts which are smaller than 10-15ms.  If we just used
  // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
  //
  // To make this work, we initialize the clock (initial_time) and the
  // counter (initial_ctr).  To compute the initial time, we can check
  // the number of ticks that have elapsed, and compute the delta.
  //
  // To avoid any drift, we periodically resync the counters to the system
  // clock.
  while(true) {
    TimeTicks ticks = TimeTicks::Now();

    // Calculate the time elapsed since we started our timer
    TimeDelta elapsed = ticks - initial_ticks;

    // Check if enough time has elapsed that we need to resync the clock.
    if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
      InitializeClock();
      continue;
    }

    return elapsed + initial_time;
  }
}

// static
Time Time::FromFileTime(FILETIME ft) {
  return Time(FileTimeToMicroseconds(ft));
}

FILETIME Time::ToFileTime() const {
  FILETIME utc_ft;
  MicrosecondsToFileTime(us_, &utc_ft);
  return utc_ft;
}

// static
Time Time::FromExploded(bool is_local, const Exploded& exploded) {
  // Create the system struct representing our exploded time. It will either be
  // in local time or UTC.
  SYSTEMTIME st;
  st.wYear = exploded.year;
  st.wMonth = exploded.month;
  st.wDayOfWeek = exploded.day_of_week;
  st.wDay = exploded.day_of_month;
  st.wHour = exploded.hour;
  st.wMinute = exploded.minute;
  st.wSecond = exploded.second;
  st.wMilliseconds = exploded.millisecond;

  // Convert to FILETIME.
  FILETIME ft;
  if (!SystemTimeToFileTime(&st, &ft)) {
    NOTREACHED() << "Unable to convert time";
    return Time(0);
  }

  // Ensure that it's in UTC.
  if (is_local) {
    FILETIME utc_ft;
    LocalFileTimeToFileTime(&ft, &utc_ft);
    return Time(FileTimeToMicroseconds(utc_ft));
  }
  return Time(FileTimeToMicroseconds(ft));
}

void Time::Explode(bool is_local, Exploded* exploded) const {
  // FILETIME in UTC.
  FILETIME utc_ft;
  MicrosecondsToFileTime(us_, &utc_ft);

  // FILETIME in local time if necessary.
  BOOL success = TRUE;
  FILETIME ft;
  if (is_local)
    success = FileTimeToLocalFileTime(&utc_ft, &ft);
  else
    ft = utc_ft;

  // FILETIME in SYSTEMTIME (exploded).
  SYSTEMTIME st;
  if (!success || !FileTimeToSystemTime(&ft, &st)) {
    NOTREACHED() << "Unable to convert time, don't know why";
    ZeroMemory(exploded, sizeof(exploded));
    return;
  }

  exploded->year = st.wYear;
  exploded->month = st.wMonth;
  exploded->day_of_week = st.wDayOfWeek;
  exploded->day_of_month = st.wDay;
  exploded->hour = st.wHour;
  exploded->minute = st.wMinute;
  exploded->second = st.wSecond;
  exploded->millisecond = st.wMilliseconds;
}

// TimeTicks ------------------------------------------------------------------
namespace {

// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor.  Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() {
  return timeGetTime();
}


DWORD (*tick_function)(void) = &timeGetTimeWrapper;

// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days.  We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 49 days.
class NowSingleton : public base::SystemMonitor::PowerObserver {
 public:
  NowSingleton()
    : rollover_(TimeDelta::FromMilliseconds(0)),
      last_seen_(0),
      hi_res_clock_enabled_(false) {
    base::SystemMonitor* system = base::SystemMonitor::Get();
    system->AddObserver(this);
    UseHiResClock(!system->BatteryPower());
  }

  ~NowSingleton() {
    UseHiResClock(false);
    base::SystemMonitor* monitor = base::SystemMonitor::Get();
    if (monitor)
      monitor->RemoveObserver(this);
  }

  TimeDelta Now() {
    AutoLock locked(lock_);
    // We should hold the lock while calling tick_function to make sure that
    // we keep our last_seen_ stay correctly in sync.
    DWORD now = tick_function();
    if (now < last_seen_)
      rollover_ += TimeDelta::FromMilliseconds(0x100000000I64);  // ~49.7 days.
    last_seen_ = now;
    return TimeDelta::FromMilliseconds(now) + rollover_;
  }

  // Interfaces for monitoring Power changes.
  void OnPowerStateChange(base::SystemMonitor* system) {
    UseHiResClock(!system->BatteryPower());
  }

  void OnSuspend(base::SystemMonitor* system) {}
  void OnResume(base::SystemMonitor* system) {}

 private:
  // Enable or disable the faster multimedia timer.
  void UseHiResClock(bool enabled) {
    if (enabled == hi_res_clock_enabled_)
      return;
    if (enabled)
      timeBeginPeriod(1);
    else
      timeEndPeriod(1);
    hi_res_clock_enabled_ = enabled;
  }

  Lock lock_;  // To protected last_seen_ and rollover_.
  TimeDelta rollover_;  // Accumulation of time lost due to rollover.
  DWORD last_seen_;  // The last timeGetTime value we saw, to detect rollover.
  bool hi_res_clock_enabled_;

  DISALLOW_COPY_AND_ASSIGN(NowSingleton);
};

// Overview of time counters:
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, the CPU counter is unreliable and should not
// be used in production. Its biggest issue is that it is per processor and it
// is not synchronized between processors. Also, on some computers, the counters
// will change frequency due to thermal and power changes, and stop in some
// states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (100 nanoseconds) time stamp but is comparatively more expensive
// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
// (with some help from ACPI).
// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
// in the worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent result on a multiprocessor computer, but it is unreliable in
// reality due to bugs in BIOS or HAL on some, especially old computers.
// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
// it should be used with caution.
//
// (3) System time. The system time provides a low-resolution (typically 10ms
// to 55 milliseconds) time stamp but is comparatively less expensive to
// retrieve and more reliable.
class HighResNowSingleton {
 public:
  HighResNowSingleton()
    : ticks_per_microsecond_(0.0),
      skew_(0) {
    InitializeClock();

    // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
    // unreliable.  Fallback to low-res clock.
    base::CPU cpu;
    if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
      DisableHighResClock();
  }

  bool IsUsingHighResClock() {
    return ticks_per_microsecond_ != 0.0;
  }

  void DisableHighResClock() {
    ticks_per_microsecond_ = 0.0;
  }

  TimeDelta Now() {
    // Our maximum tolerance for QPC drifting.
    const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond;

    if (IsUsingHighResClock()) {
      int64 now = UnreliableNow();

      // Verify that QPC does not seem to drift.
      DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift);

      return TimeDelta::FromMicroseconds(now);
    }

    // Just fallback to the slower clock.
    return Singleton<NowSingleton>::get()->Now();
  }

 private:
  // Synchronize the QPC clock with GetSystemTimeAsFileTime.
  void InitializeClock() {
    LARGE_INTEGER ticks_per_sec = {0};
    if (!QueryPerformanceFrequency(&ticks_per_sec))
      return;  // Broken, we don't guarantee this function works.
    ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
      static_cast<float>(Time::kMicrosecondsPerSecond);

    skew_ = UnreliableNow() - ReliableNow();
  }

  // Get the number of microseconds since boot in a reliable fashion
  int64 UnreliableNow() {
    LARGE_INTEGER now;
    QueryPerformanceCounter(&now);
    return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
  }

  // Get the number of microseconds since boot in a reliable fashion
  int64 ReliableNow() {
    return Singleton<NowSingleton>::get()->Now().InMicroseconds();
  }

  // Cached clock frequency -> microseconds. This assumes that the clock
  // frequency is faster than one microsecond (which is 1MHz, should be OK).
  float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
  int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).

  DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton);
};

}  // namespace

// static
TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
    TickFunctionType ticker) {
  TickFunctionType old = tick_function;
  tick_function = ticker;
  return old;
}

// static
TimeTicks TimeTicks::Now() {
  return TimeTicks() + Singleton<NowSingleton>::get()->Now();
}

// static
TimeTicks TimeTicks::HighResNow() {
  return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now();
}