summaryrefslogtreecommitdiffstats
path: root/base/tools_sanity_unittest.cc
blob: 21dc0e20afc6109b05074c5aec7815ef32eaada0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains intentional memory errors, some of which may lead to
// crashes if the test is ran without special memory testing tools. We use these
// errors to verify the sanity of the tools.

#include "base/atomicops.h"
#include "base/message_loop.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/threading/thread.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {

namespace {

const base::subtle::Atomic32 kMagicValue = 42;

// Helper for memory accesses that can potentially corrupt memory or cause a
// crash during a native run.
#if defined(ADDRESS_SANITIZER)
#if defined(OS_IOS)
// EXPECT_DEATH is not supported on IOS.
#define HARMFUL_ACCESS(action,error_regexp) do { action; } while (0)
#else
#define HARMFUL_ACCESS(action,error_regexp) EXPECT_DEATH(action,error_regexp)
#endif  // !OS_IOS
#else
#define HARMFUL_ACCESS(action,error_regexp) \
do { if (RunningOnValgrind()) { action; } } while (0)
#endif

void ReadUninitializedValue(char *ptr) {
  // Comparison with 64 is to prevent clang from optimizing away the
  // jump -- valgrind only catches jumps and conditional moves, but clang uses
  // the borrow flag if the condition is just `*ptr == '\0'`.
  if (*ptr == 64) {
    (*ptr)++;
  } else {
    (*ptr)--;
  }
}

void ReadValueOutOfArrayBoundsLeft(char *ptr) {
  char c = ptr[-2];
  VLOG(1) << "Reading a byte out of bounds: " << c;
}

void ReadValueOutOfArrayBoundsRight(char *ptr, size_t size) {
  char c = ptr[size + 1];
  VLOG(1) << "Reading a byte out of bounds: " << c;
}

// This is harmless if you run it under Valgrind thanks to redzones.
void WriteValueOutOfArrayBoundsLeft(char *ptr) {
  ptr[-1] = kMagicValue;
}

// This is harmless if you run it under Valgrind thanks to redzones.
void WriteValueOutOfArrayBoundsRight(char *ptr, size_t size) {
  ptr[size] = kMagicValue;
}

void MakeSomeErrors(char *ptr, size_t size) {
  ReadUninitializedValue(ptr);
  HARMFUL_ACCESS(ReadValueOutOfArrayBoundsLeft(ptr),
                 "heap-buffer-overflow.*2 bytes to the left");
  HARMFUL_ACCESS(ReadValueOutOfArrayBoundsRight(ptr, size),
                 "heap-buffer-overflow.*1 bytes to the right");
  HARMFUL_ACCESS(WriteValueOutOfArrayBoundsLeft(ptr),
                 "heap-buffer-overflow.*1 bytes to the left");
  HARMFUL_ACCESS(WriteValueOutOfArrayBoundsRight(ptr, size),
                 "heap-buffer-overflow.*0 bytes to the right");
}

}  // namespace

// A memory leak detector should report an error in this test.
TEST(ToolsSanityTest, MemoryLeak) {
  // Without the |volatile|, clang optimizes away the next two lines.
  int* volatile leak = new int[256];  // Leak some memory intentionally.
  leak[4] = 1;  // Make sure the allocated memory is used.
}

#if defined(ADDRESS_SANITIZER) && (defined(OS_IOS) || defined(OS_WIN))
// Because iOS doesn't support death tests, each of the following tests will
// crash the whole program under Asan. On Windows Asan is based on SyzyAsan, the
// error report mecanism is different than with Asan so those test will fail.
#define MAYBE_AccessesToNewMemory DISABLED_AccessesToNewMemory
#define MAYBE_AccessesToMallocMemory DISABLED_AccessesToMallocMemory
#else
#define MAYBE_AccessesToNewMemory AccessesToNewMemory
#define MAYBE_AccessesToMallocMemory AccessesToMallocMemory
#define MAYBE_ArrayDeletedWithoutBraces ArrayDeletedWithoutBraces
#define MAYBE_SingleElementDeletedWithBraces SingleElementDeletedWithBraces
#endif

// The following tests pass with Clang r170392, but not r172454, which
// makes AddressSanitizer detect errors in them. We disable these tests under
// AddressSanitizer until we fully switch to Clang r172454. After that the
// tests should be put back under the (defined(OS_IOS) || defined(OS_WIN))
// clause above.
// See also http://crbug.com/172614.
#if defined(ADDRESS_SANITIZER)
#define MAYBE_SingleElementDeletedWithBraces \
    DISABLED_SingleElementDeletedWithBraces
#define MAYBE_ArrayDeletedWithoutBraces DISABLED_ArrayDeletedWithoutBraces
#endif
TEST(ToolsSanityTest, MAYBE_AccessesToNewMemory) {
  char *foo = new char[10];
  MakeSomeErrors(foo, 10);
  delete [] foo;
  // Use after delete.
  HARMFUL_ACCESS(foo[5] = 0, "heap-use-after-free");
}

TEST(ToolsSanityTest, MAYBE_AccessesToMallocMemory) {
  char *foo = reinterpret_cast<char*>(malloc(10));
  MakeSomeErrors(foo, 10);
  free(foo);
  // Use after free.
  HARMFUL_ACCESS(foo[5] = 0, "heap-use-after-free");
}

TEST(ToolsSanityTest, MAYBE_ArrayDeletedWithoutBraces) {
#if !defined(ADDRESS_SANITIZER)
  // This test may corrupt memory if not run under Valgrind or compiled with
  // AddressSanitizer.
  if (!RunningOnValgrind())
    return;
#endif

  // Without the |volatile|, clang optimizes away the next two lines.
  int* volatile foo = new int[10];
  delete foo;
}

TEST(ToolsSanityTest, MAYBE_SingleElementDeletedWithBraces) {
#if !defined(ADDRESS_SANITIZER)
  // This test may corrupt memory if not run under Valgrind or compiled with
  // AddressSanitizer.
  if (!RunningOnValgrind())
    return;
#endif

  // Without the |volatile|, clang optimizes away the next two lines.
  int* volatile foo = new int;
  (void) foo;
  delete [] foo;
}

#if defined(ADDRESS_SANITIZER)
TEST(ToolsSanityTest, DISABLED_AddressSanitizerNullDerefCrashTest) {
  // Intentionally crash to make sure AddressSanitizer is running.
  // This test should not be ran on bots.
  int* volatile zero = NULL;
  *zero = 0;
}

TEST(ToolsSanityTest, DISABLED_AddressSanitizerLocalOOBCrashTest) {
  // Intentionally crash to make sure AddressSanitizer is instrumenting
  // the local variables.
  // This test should not be ran on bots.
  int array[5];
  // Work around the OOB warning reported by Clang.
  int* volatile access = &array[5];
  *access = 43;
}

namespace {
int g_asan_test_global_array[10];
}  // namespace

TEST(ToolsSanityTest, DISABLED_AddressSanitizerGlobalOOBCrashTest) {
  // Intentionally crash to make sure AddressSanitizer is instrumenting
  // the global variables.
  // This test should not be ran on bots.

  // Work around the OOB warning reported by Clang.
  int* volatile access = g_asan_test_global_array - 1;
  *access = 43;
}

#endif

namespace {

// We use caps here just to ensure that the method name doesn't interfere with
// the wildcarded suppressions.
class TOOLS_SANITY_TEST_CONCURRENT_THREAD : public PlatformThread::Delegate {
 public:
  explicit TOOLS_SANITY_TEST_CONCURRENT_THREAD(bool *value) : value_(value) {}
  virtual ~TOOLS_SANITY_TEST_CONCURRENT_THREAD() {}
  virtual void ThreadMain() OVERRIDE {
    *value_ = true;

    // Sleep for a few milliseconds so the two threads are more likely to live
    // simultaneously. Otherwise we may miss the report due to mutex
    // lock/unlock's inside thread creation code in pure-happens-before mode...
    PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
  }
 private:
  bool *value_;
};

class ReleaseStoreThread : public PlatformThread::Delegate {
 public:
  explicit ReleaseStoreThread(base::subtle::Atomic32 *value) : value_(value) {}
  virtual ~ReleaseStoreThread() {}
  virtual void ThreadMain() OVERRIDE {
    base::subtle::Release_Store(value_, kMagicValue);

    // Sleep for a few milliseconds so the two threads are more likely to live
    // simultaneously. Otherwise we may miss the report due to mutex
    // lock/unlock's inside thread creation code in pure-happens-before mode...
    PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
  }
 private:
  base::subtle::Atomic32 *value_;
};

class AcquireLoadThread : public PlatformThread::Delegate {
 public:
  explicit AcquireLoadThread(base::subtle::Atomic32 *value) : value_(value) {}
  virtual ~AcquireLoadThread() {}
  virtual void ThreadMain() OVERRIDE {
    // Wait for the other thread to make Release_Store
    PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    base::subtle::Acquire_Load(value_);
  }
 private:
  base::subtle::Atomic32 *value_;
};

void RunInParallel(PlatformThread::Delegate *d1, PlatformThread::Delegate *d2) {
  PlatformThreadHandle a;
  PlatformThreadHandle b;
  PlatformThread::Create(0, d1, &a);
  PlatformThread::Create(0, d2, &b);
  PlatformThread::Join(a);
  PlatformThread::Join(b);
}

}  // namespace

// A data race detector should report an error in this test.
TEST(ToolsSanityTest, DataRace) {
  bool shared = false;
  TOOLS_SANITY_TEST_CONCURRENT_THREAD thread1(&shared), thread2(&shared);
  RunInParallel(&thread1, &thread2);
  EXPECT_TRUE(shared);
}

TEST(ToolsSanityTest, AnnotateBenignRace) {
  bool shared = false;
  ANNOTATE_BENIGN_RACE(&shared, "Intentional race - make sure doesn't show up");
  TOOLS_SANITY_TEST_CONCURRENT_THREAD thread1(&shared), thread2(&shared);
  RunInParallel(&thread1, &thread2);
  EXPECT_TRUE(shared);
}

TEST(ToolsSanityTest, AtomicsAreIgnored) {
  base::subtle::Atomic32 shared = 0;
  ReleaseStoreThread thread1(&shared);
  AcquireLoadThread thread2(&shared);
  RunInParallel(&thread1, &thread2);
  EXPECT_EQ(kMagicValue, shared);
}

}  // namespace base