summaryrefslogtreecommitdiffstats
path: root/base/trace_event/process_memory_dump_unittest.cc
blob: e7fe960cb11c2724f2ebb4bd29c037c6fef1b70a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/trace_event/process_memory_dump.h"

#include <stddef.h>

#include "base/memory/aligned_memory.h"
#include "base/process/process_metrics.h"
#include "base/trace_event/memory_allocator_dump_guid.h"
#include "base/trace_event/trace_event_argument.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {
namespace trace_event {

namespace {
TracedValue* GetHeapDump(const ProcessMemoryDump& pmd, const char* name) {
  auto it = pmd.heap_dumps().find(name);
  return it == pmd.heap_dumps().end() ? nullptr : it->second.get();
}
}  // namespace

TEST(ProcessMemoryDumpTest, Clear) {
  scoped_ptr<ProcessMemoryDump> pmd1(new ProcessMemoryDump(nullptr));
  pmd1->CreateAllocatorDump("mad1");
  pmd1->CreateAllocatorDump("mad2");
  ASSERT_FALSE(pmd1->allocator_dumps().empty());

  pmd1->process_totals()->set_resident_set_bytes(42);
  pmd1->set_has_process_totals();

  pmd1->process_mmaps()->AddVMRegion(ProcessMemoryMaps::VMRegion());
  pmd1->set_has_process_mmaps();

  pmd1->AddOwnershipEdge(MemoryAllocatorDumpGuid(42),
                         MemoryAllocatorDumpGuid(4242));

  MemoryAllocatorDumpGuid shared_mad_guid1(1);
  MemoryAllocatorDumpGuid shared_mad_guid2(2);
  pmd1->CreateSharedGlobalAllocatorDump(shared_mad_guid1);
  pmd1->CreateSharedGlobalAllocatorDump(shared_mad_guid2);

  pmd1->Clear();
  ASSERT_TRUE(pmd1->allocator_dumps().empty());
  ASSERT_TRUE(pmd1->allocator_dumps_edges().empty());
  ASSERT_EQ(nullptr, pmd1->GetAllocatorDump("mad1"));
  ASSERT_EQ(nullptr, pmd1->GetAllocatorDump("mad2"));
  ASSERT_FALSE(pmd1->has_process_totals());
  ASSERT_FALSE(pmd1->has_process_mmaps());
  ASSERT_TRUE(pmd1->process_mmaps()->vm_regions().empty());
  ASSERT_EQ(nullptr, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid1));
  ASSERT_EQ(nullptr, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid2));

  // Check that calling AsValueInto() doesn't cause a crash.
  scoped_ptr<TracedValue> traced_value(new TracedValue);
  pmd1->AsValueInto(traced_value.get());

  // Check that the pmd can be reused and behaves as expected.
  auto mad1 = pmd1->CreateAllocatorDump("mad1");
  auto mad3 = pmd1->CreateAllocatorDump("mad3");
  auto shared_mad1 = pmd1->CreateSharedGlobalAllocatorDump(shared_mad_guid1);
  auto shared_mad2 =
      pmd1->CreateWeakSharedGlobalAllocatorDump(shared_mad_guid2);
  ASSERT_EQ(4u, pmd1->allocator_dumps().size());
  ASSERT_EQ(mad1, pmd1->GetAllocatorDump("mad1"));
  ASSERT_EQ(nullptr, pmd1->GetAllocatorDump("mad2"));
  ASSERT_EQ(mad3, pmd1->GetAllocatorDump("mad3"));
  ASSERT_EQ(shared_mad1, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid1));
  ASSERT_EQ(MemoryAllocatorDump::Flags::DEFAULT, shared_mad1->flags());
  ASSERT_EQ(shared_mad2, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid2));
  ASSERT_EQ(MemoryAllocatorDump::Flags::WEAK, shared_mad2->flags());

  traced_value.reset(new TracedValue);
  pmd1->AsValueInto(traced_value.get());

  pmd1.reset();
}

TEST(ProcessMemoryDumpTest, TakeAllDumpsFrom) {
  scoped_ptr<TracedValue> traced_value(new TracedValue);
  TracedValue* heap_dumps_ptr[4];
  scoped_ptr<TracedValue> heap_dump;

  scoped_ptr<ProcessMemoryDump> pmd1(new ProcessMemoryDump(nullptr));
  auto mad1_1 = pmd1->CreateAllocatorDump("pmd1/mad1");
  auto mad1_2 = pmd1->CreateAllocatorDump("pmd1/mad2");
  pmd1->AddOwnershipEdge(mad1_1->guid(), mad1_2->guid());
  heap_dump.reset(new TracedValue);
  heap_dumps_ptr[0] = heap_dump.get();
  pmd1->AddHeapDump("pmd1/heap_dump1", std::move(heap_dump));
  heap_dump.reset(new TracedValue);
  heap_dumps_ptr[1] = heap_dump.get();
  pmd1->AddHeapDump("pmd1/heap_dump2", std::move(heap_dump));

  scoped_ptr<ProcessMemoryDump> pmd2(new ProcessMemoryDump(nullptr));
  auto mad2_1 = pmd2->CreateAllocatorDump("pmd2/mad1");
  auto mad2_2 = pmd2->CreateAllocatorDump("pmd2/mad2");
  pmd2->AddOwnershipEdge(mad2_1->guid(), mad2_2->guid());
  heap_dump.reset(new TracedValue);
  heap_dumps_ptr[2] = heap_dump.get();
  pmd2->AddHeapDump("pmd2/heap_dump1", std::move(heap_dump));
  heap_dump.reset(new TracedValue);
  heap_dumps_ptr[3] = heap_dump.get();
  pmd2->AddHeapDump("pmd2/heap_dump2", std::move(heap_dump));

  MemoryAllocatorDumpGuid shared_mad_guid1(1);
  MemoryAllocatorDumpGuid shared_mad_guid2(2);
  auto shared_mad1 = pmd2->CreateSharedGlobalAllocatorDump(shared_mad_guid1);
  auto shared_mad2 =
      pmd2->CreateWeakSharedGlobalAllocatorDump(shared_mad_guid2);

  pmd1->TakeAllDumpsFrom(pmd2.get());

  // Make sure that pmd2 is empty but still usable after it has been emptied.
  ASSERT_TRUE(pmd2->allocator_dumps().empty());
  ASSERT_TRUE(pmd2->allocator_dumps_edges().empty());
  ASSERT_TRUE(pmd2->heap_dumps().empty());
  pmd2->CreateAllocatorDump("pmd2/this_mad_stays_with_pmd2");
  ASSERT_EQ(1u, pmd2->allocator_dumps().size());
  ASSERT_EQ(1u, pmd2->allocator_dumps().count("pmd2/this_mad_stays_with_pmd2"));
  pmd2->AddOwnershipEdge(MemoryAllocatorDumpGuid(42),
                         MemoryAllocatorDumpGuid(4242));

  // Check that calling AsValueInto() doesn't cause a crash.
  pmd2->AsValueInto(traced_value.get());

  // Free the |pmd2| to check that the memory ownership of the two MAD(s)
  // has been transferred to |pmd1|.
  pmd2.reset();

  // Now check that |pmd1| has been effectively merged.
  ASSERT_EQ(6u, pmd1->allocator_dumps().size());
  ASSERT_EQ(1u, pmd1->allocator_dumps().count("pmd1/mad1"));
  ASSERT_EQ(1u, pmd1->allocator_dumps().count("pmd1/mad2"));
  ASSERT_EQ(1u, pmd1->allocator_dumps().count("pmd2/mad1"));
  ASSERT_EQ(1u, pmd1->allocator_dumps().count("pmd1/mad2"));
  ASSERT_EQ(2u, pmd1->allocator_dumps_edges().size());
  ASSERT_EQ(shared_mad1, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid1));
  ASSERT_EQ(shared_mad2, pmd1->GetSharedGlobalAllocatorDump(shared_mad_guid2));
  ASSERT_TRUE(MemoryAllocatorDump::Flags::WEAK & shared_mad2->flags());
  ASSERT_EQ(4u, pmd1->heap_dumps().size());
  ASSERT_EQ(heap_dumps_ptr[0], GetHeapDump(*pmd1, "pmd1/heap_dump1"));
  ASSERT_EQ(heap_dumps_ptr[1], GetHeapDump(*pmd1, "pmd1/heap_dump2"));
  ASSERT_EQ(heap_dumps_ptr[2], GetHeapDump(*pmd1, "pmd2/heap_dump1"));
  ASSERT_EQ(heap_dumps_ptr[3], GetHeapDump(*pmd1, "pmd2/heap_dump2"));

  // Check that calling AsValueInto() doesn't cause a crash.
  traced_value.reset(new TracedValue);
  pmd1->AsValueInto(traced_value.get());

  pmd1.reset();
}

TEST(ProcessMemoryDumpTest, Suballocations) {
  scoped_ptr<ProcessMemoryDump> pmd(new ProcessMemoryDump(nullptr));
  const std::string allocator_dump_name = "fakealloc/allocated_objects";
  pmd->CreateAllocatorDump(allocator_dump_name);

  // Create one allocation with an auto-assigned guid and mark it as a
  // suballocation of "fakealloc/allocated_objects".
  auto pic1_dump = pmd->CreateAllocatorDump("picturemanager/picture1");
  pmd->AddSuballocation(pic1_dump->guid(), allocator_dump_name);

  // Same here, but this time create an allocation with an explicit guid.
  auto pic2_dump = pmd->CreateAllocatorDump("picturemanager/picture2",
                                            MemoryAllocatorDumpGuid(0x42));
  pmd->AddSuballocation(pic2_dump->guid(), allocator_dump_name);

  // Now check that AddSuballocation() has created anonymous child dumps under
  // "fakealloc/allocated_objects".
  auto anon_node_1_it = pmd->allocator_dumps().find(
      allocator_dump_name + "/__" + pic1_dump->guid().ToString());
  ASSERT_NE(pmd->allocator_dumps().end(), anon_node_1_it);

  auto anon_node_2_it =
      pmd->allocator_dumps().find(allocator_dump_name + "/__42");
  ASSERT_NE(pmd->allocator_dumps().end(), anon_node_2_it);

  // Finally check that AddSuballocation() has created also the
  // edges between the pictures and the anonymous allocator child dumps.
  bool found_edge[2]{false, false};
  for (const auto& e : pmd->allocator_dumps_edges()) {
    found_edge[0] |= (e.source == pic1_dump->guid() &&
                      e.target == anon_node_1_it->second->guid());
    found_edge[1] |= (e.source == pic2_dump->guid() &&
                      e.target == anon_node_2_it->second->guid());
  }
  ASSERT_TRUE(found_edge[0]);
  ASSERT_TRUE(found_edge[1]);

  // Check that calling AsValueInto() doesn't cause a crash.
  scoped_ptr<TracedValue> traced_value(new TracedValue);
  pmd->AsValueInto(traced_value.get());

  pmd.reset();
}

TEST(ProcessMemoryDumpTest, GlobalAllocatorDumpTest) {
  scoped_ptr<ProcessMemoryDump> pmd(new ProcessMemoryDump(nullptr));
  MemoryAllocatorDumpGuid shared_mad_guid(1);
  auto shared_mad1 = pmd->CreateWeakSharedGlobalAllocatorDump(shared_mad_guid);
  ASSERT_EQ(shared_mad_guid, shared_mad1->guid());
  ASSERT_EQ(MemoryAllocatorDump::Flags::WEAK, shared_mad1->flags());

  auto shared_mad2 = pmd->GetSharedGlobalAllocatorDump(shared_mad_guid);
  ASSERT_EQ(shared_mad1, shared_mad2);
  ASSERT_EQ(MemoryAllocatorDump::Flags::WEAK, shared_mad1->flags());

  auto shared_mad3 = pmd->CreateWeakSharedGlobalAllocatorDump(shared_mad_guid);
  ASSERT_EQ(shared_mad1, shared_mad3);
  ASSERT_EQ(MemoryAllocatorDump::Flags::WEAK, shared_mad1->flags());

  auto shared_mad4 = pmd->CreateSharedGlobalAllocatorDump(shared_mad_guid);
  ASSERT_EQ(shared_mad1, shared_mad4);
  ASSERT_EQ(MemoryAllocatorDump::Flags::DEFAULT, shared_mad1->flags());

  auto shared_mad5 = pmd->CreateWeakSharedGlobalAllocatorDump(shared_mad_guid);
  ASSERT_EQ(shared_mad1, shared_mad5);
  ASSERT_EQ(MemoryAllocatorDump::Flags::DEFAULT, shared_mad1->flags());
}

#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
TEST(ProcessMemoryDumpTest, CountResidentBytes) {
  const size_t page_size = ProcessMemoryDump::GetSystemPageSize();

  // Allocate few page of dirty memory and check if it is resident.
  const size_t size1 = 5 * page_size;
  scoped_ptr<char, base::AlignedFreeDeleter> memory1(
      static_cast<char*>(base::AlignedAlloc(size1, page_size)));
  memset(memory1.get(), 0, size1);
  size_t res1 = ProcessMemoryDump::CountResidentBytes(memory1.get(), size1);
  ASSERT_EQ(res1, size1);

  // Allocate a large memory segment (> 8Mib).
  const size_t kVeryLargeMemorySize = 15 * 1024 * 1024;
  scoped_ptr<char, base::AlignedFreeDeleter> memory2(
      static_cast<char*>(base::AlignedAlloc(kVeryLargeMemorySize, page_size)));
  memset(memory2.get(), 0, kVeryLargeMemorySize);
  size_t res2 = ProcessMemoryDump::CountResidentBytes(memory2.get(),
                                                      kVeryLargeMemorySize);
  ASSERT_EQ(res2, kVeryLargeMemorySize);
}
#endif  // defined(COUNT_RESIDENT_BYTES_SUPPORTED)

}  // namespace trace_event
}  // namespace base