summaryrefslogtreecommitdiffstats
path: root/base/tracked_objects.cc
blob: 71b3bc620237731754a26a5d92b2f5d08cbf1475 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/tracked_objects.h"

#include <math.h>

#include "base/format_macros.h"
#include "base/message_loop.h"
#include "base/stringprintf.h"
#include "base/third_party/valgrind/memcheck.h"
#include "base/threading/thread_restrictions.h"
#include "build/build_config.h"
#include "base/port.h"

using base::TimeDelta;

namespace tracked_objects {

namespace {

// Flag to compile out almost all of the task tracking code.
const bool kTrackAllTaskObjects = true;

// Flag to compile out parent-child link recording.
const bool kTrackParentChildLinks = false;

// When ThreadData is first initialized, should we start in an ACTIVE state to
// record all of the startup-time tasks, or should we start up DEACTIVATED, so
// that we only record after parsing the command line flag --enable-tracking.
// Note that the flag may force either state, so this really controls only the
// period of time up until that flag is parsed. If there is no flag seen, then
// this state may prevail for much or all of the process lifetime.
const ThreadData::Status kInitialStartupState =
    ThreadData::PROFILING_CHILDREN_ACTIVE;

}  // namespace

//------------------------------------------------------------------------------
// DeathData tallies durations when a death takes place.

DeathData::DeathData() {
  Clear();
}

DeathData::DeathData(int count) {
  Clear();
  count_ = count;
}

// TODO(jar): I need to see if this macro to optimize branching is worth using.
//
// This macro has no branching, so it is surely fast, and is equivalent to:
//             if (assign_it)
//               target = source;
// We use a macro rather than a template to force this to inline.
// Related code for calculating max is discussed on the web.
#define CONDITIONAL_ASSIGN(assign_it, target, source) \
    ((target) ^= ((target) ^ (source)) & -static_cast<DurationInt>(assign_it))

void DeathData::RecordDeath(const DurationInt queue_duration,
                            const DurationInt run_duration,
                            int32 random_number) {
  ++count_;
  queue_duration_sum_ += queue_duration;
  run_duration_sum_ += run_duration;

  if (queue_duration_max_ < queue_duration)
    queue_duration_max_ = queue_duration;
  if (run_duration_max_ < run_duration)
    run_duration_max_ = run_duration;

  // Take a uniformly distributed sample over all durations ever supplied.
  // The probability that we (instead) use this new sample is 1/count_.  This
  // results in a completely uniform selection of the sample.
  // We ignore the fact that we correlated our selection of a sample of run
  // and queue times.
  if (0 == (random_number % count_)) {
    queue_duration_sample_ = queue_duration;
    run_duration_sample_ = run_duration;
  }
}

int DeathData::count() const { return count_; }

DurationInt DeathData::run_duration_sum() const { return run_duration_sum_; }

DurationInt DeathData::run_duration_max() const { return run_duration_max_; }

DurationInt DeathData::run_duration_sample() const {
  return run_duration_sample_;
}

DurationInt DeathData::queue_duration_sum() const {
  return queue_duration_sum_;
}

DurationInt DeathData::queue_duration_max() const {
  return queue_duration_max_;
}

DurationInt DeathData::queue_duration_sample() const {
  return queue_duration_sample_;
}


base::DictionaryValue* DeathData::ToValue() const {
  base::DictionaryValue* dictionary = new base::DictionaryValue;
  dictionary->Set("count", base::Value::CreateIntegerValue(count_));
  dictionary->Set("run_ms",
      base::Value::CreateIntegerValue(run_duration_sum()));
  dictionary->Set("run_ms_max",
      base::Value::CreateIntegerValue(run_duration_max()));
  dictionary->Set("run_ms_sample",
      base::Value::CreateIntegerValue(run_duration_sample()));
  dictionary->Set("queue_ms",
      base::Value::CreateIntegerValue(queue_duration_sum()));
  dictionary->Set("queue_ms_max",
      base::Value::CreateIntegerValue(queue_duration_max()));
  dictionary->Set("queue_ms_sample",
      base::Value::CreateIntegerValue(queue_duration_sample()));
  return dictionary;
}

void DeathData::ResetMax() {
  run_duration_max_ = 0;
  queue_duration_max_ = 0;
}

void DeathData::Clear() {
  count_ = 0;
  run_duration_sum_ = 0;
  run_duration_max_ = 0;
  run_duration_sample_ = 0;
  queue_duration_sum_ = 0;
  queue_duration_max_ = 0;
  queue_duration_sample_ = 0;
}

//------------------------------------------------------------------------------
BirthOnThread::BirthOnThread(const Location& location,
                             const ThreadData& current)
    : location_(location),
      birth_thread_(&current) {
}

const Location BirthOnThread::location() const { return location_; }
const ThreadData* BirthOnThread::birth_thread() const { return birth_thread_; }

void BirthOnThread::ToValue(const std::string& prefix,
                            base::DictionaryValue* dictionary) const {
  dictionary->Set(prefix + "_location", location_.ToValue());
  dictionary->Set(prefix + "_thread",
                  base::Value::CreateStringValue(birth_thread_->thread_name()));
}

//------------------------------------------------------------------------------
Births::Births(const Location& location, const ThreadData& current)
    : BirthOnThread(location, current),
      birth_count_(1) { }

int Births::birth_count() const { return birth_count_; }

void Births::RecordBirth() { ++birth_count_; }

void Births::ForgetBirth() { --birth_count_; }

void Births::Clear() { birth_count_ = 0; }

//------------------------------------------------------------------------------
// ThreadData maintains the central data for all births and deaths on a single
// thread.

// TODO(jar): We should pull all these static vars together, into a struct, and
// optimize layout so that we benefit from locality of reference during accesses
// to them.

// A TLS slot which points to the ThreadData instance for the current thread. We
// do a fake initialization here (zeroing out data), and then the real in-place
// construction happens when we call tls_index_.Initialize().
// static
base::ThreadLocalStorage::Slot ThreadData::tls_index_(base::LINKER_INITIALIZED);

// static
int ThreadData::worker_thread_data_creation_count_ = 0;

// static
int ThreadData::cleanup_count_ = 0;

// static
int ThreadData::incarnation_counter_ = 0;

// static
ThreadData* ThreadData::all_thread_data_list_head_ = NULL;

// static
ThreadData* ThreadData::first_retired_worker_ = NULL;

// static
base::LazyInstance<base::Lock>::Leaky
    ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;

// static
ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;

ThreadData::ThreadData(const std::string& suggested_name)
    : next_(NULL),
      next_retired_worker_(NULL),
      worker_thread_number_(0),
      incarnation_count_for_pool_(-1) {
  DCHECK_GE(suggested_name.size(), 0u);
  thread_name_ = suggested_name;
  PushToHeadOfList();  // Which sets real incarnation_count_for_pool_.
}

ThreadData::ThreadData(int thread_number)
    : next_(NULL),
      next_retired_worker_(NULL),
      worker_thread_number_(thread_number),
      incarnation_count_for_pool_(-1)  {
  CHECK_GT(thread_number, 0);
  base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
  PushToHeadOfList();  // Which sets real incarnation_count_for_pool_.
}

ThreadData::~ThreadData() {}

void ThreadData::PushToHeadOfList() {
  // Toss in a hint of randomness (atop the uniniitalized value).
  (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
                                                 sizeof(random_number_));
  random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
  random_number_ ^= (Now() - TrackedTime()).InMilliseconds();

  DCHECK(!next_);
  base::AutoLock lock(*list_lock_.Pointer());
  incarnation_count_for_pool_ = incarnation_counter_;
  next_ = all_thread_data_list_head_;
  all_thread_data_list_head_ = this;
}

// static
ThreadData* ThreadData::first() {
  base::AutoLock lock(*list_lock_.Pointer());
  return all_thread_data_list_head_;
}

ThreadData* ThreadData::next() const { return next_; }

// static
void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
  if (!Initialize())  // Always initialize if needed.
    return;
  ThreadData* current_thread_data =
      reinterpret_cast<ThreadData*>(tls_index_.Get());
  if (current_thread_data)
    return;  // Browser tests instigate this.
  current_thread_data = new ThreadData(suggested_name);
  tls_index_.Set(current_thread_data);
}

// static
ThreadData* ThreadData::Get() {
  if (!tls_index_.initialized())
    return NULL;  // For unittests only.
  ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
  if (registered)
    return registered;

  // We must be a worker thread, since we didn't pre-register.
  ThreadData* worker_thread_data = NULL;
  int worker_thread_number = 0;
  {
    base::AutoLock lock(*list_lock_.Pointer());
    if (first_retired_worker_) {
      worker_thread_data = first_retired_worker_;
      first_retired_worker_ = first_retired_worker_->next_retired_worker_;
      worker_thread_data->next_retired_worker_ = NULL;
    } else {
      worker_thread_number = ++worker_thread_data_creation_count_;
    }
  }

  // If we can't find a previously used instance, then we have to create one.
  if (!worker_thread_data) {
    DCHECK_GT(worker_thread_number, 0);
    worker_thread_data = new ThreadData(worker_thread_number);
  }
  DCHECK_GT(worker_thread_data->worker_thread_number_, 0);

  tls_index_.Set(worker_thread_data);
  return worker_thread_data;
}

// static
void ThreadData::OnThreadTermination(void* thread_data) {
  DCHECK(thread_data);  // TLS should *never* call us with a NULL.
  // We must NOT do any allocations during this callback. There is a chance
  // that the allocator is no longer active on this thread.
  if (!kTrackAllTaskObjects)
    return;  // Not compiled in.
  reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
}

void ThreadData::OnThreadTerminationCleanup() {
  // The list_lock_ was created when we registered the callback, so it won't be
  // allocated here despite the lazy reference.
  base::AutoLock lock(*list_lock_.Pointer());
  if (incarnation_counter_ != incarnation_count_for_pool_)
    return;  // ThreadData was constructed in an earlier unit test.
  ++cleanup_count_;
  // Only worker threads need to be retired and reused.
  if (!worker_thread_number_) {
    return;
  }
  // We must NOT do any allocations during this callback.
  // Using the simple linked lists avoids all allocations.
  DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
  this->next_retired_worker_ = first_retired_worker_;
  first_retired_worker_ = this;
}

// static
base::DictionaryValue* ThreadData::ToValue(bool reset_max) {
  DataCollector collected_data;  // Gather data.
  // Request multiple calls to collected_data.Append() for all threads.
  SendAllMaps(reset_max, &collected_data);
  collected_data.AddListOfLivingObjects();  // Add births that are still alive.
  base::DictionaryValue* dictionary = new base::DictionaryValue();
  collected_data.ToValue(dictionary);
  return dictionary;
}

Births* ThreadData::TallyABirth(const Location& location) {
  BirthMap::iterator it = birth_map_.find(location);
  Births* child;
  if (it != birth_map_.end()) {
    child =  it->second;
    child->RecordBirth();
  } else {
    child = new Births(location, *this);  // Leak this.
    // Lock since the map may get relocated now, and other threads sometimes
    // snapshot it (but they lock before copying it).
    base::AutoLock lock(map_lock_);
    birth_map_[location] = child;
  }

  if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
      !parent_stack_.empty()) {
    const Births* parent = parent_stack_.top();
    ParentChildPair pair(parent, child);
    if (parent_child_set_.find(pair) == parent_child_set_.end()) {
      // Lock since the map may get relocated now, and other threads sometimes
      // snapshot it (but they lock before copying it).
      base::AutoLock lock(map_lock_);
      parent_child_set_.insert(pair);
    }
  }

  return child;
}

void ThreadData::TallyADeath(const Births& birth,
                             DurationInt queue_duration,
                             DurationInt run_duration) {
  // Stir in some randomness, plus add constant in case durations are zero.
  const DurationInt kSomePrimeNumber = 2147483647;
  random_number_ += queue_duration + run_duration + kSomePrimeNumber;
  // An address is going to have some randomness to it as well ;-).
  random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));

  DeathMap::iterator it = death_map_.find(&birth);
  DeathData* death_data;
  if (it != death_map_.end()) {
    death_data = &it->second;
  } else {
    base::AutoLock lock(map_lock_);  // Lock as the map may get relocated now.
    death_data = &death_map_[&birth];
  }  // Release lock ASAP.
  death_data->RecordDeath(queue_duration, run_duration, random_number_);

  if (!kTrackParentChildLinks)
    return;
  if (!parent_stack_.empty()) {  // We might get turned off.
    DCHECK_EQ(parent_stack_.top(), &birth);
    parent_stack_.pop();
  }
}

// static
Births* ThreadData::TallyABirthIfActive(const Location& location) {
  if (!kTrackAllTaskObjects)
    return NULL;  // Not compiled in.

  if (!tracking_status())
    return NULL;
  ThreadData* current_thread_data = Get();
  if (!current_thread_data)
    return NULL;
  return current_thread_data->TallyABirth(location);
}

// static
void ThreadData::TallyRunOnNamedThreadIfTracking(
    const base::TrackingInfo& completed_task,
    const TrackedTime& start_of_run,
    const TrackedTime& end_of_run) {
  if (!kTrackAllTaskObjects)
    return;  // Not compiled in.

  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  const Births* birth = completed_task.birth_tally;
  if (!birth)
    return;
  ThreadData* current_thread_data = Get();
  if (!current_thread_data)
    return;

  // To avoid conflating our stats with the delay duration in a PostDelayedTask,
  // we identify such tasks, and replace their post_time with the time they
  // were scheduled (requested?) to emerge from the delayed task queue. This
  // means that queueing delay for such tasks will show how long they went
  // unserviced, after they *could* be serviced.  This is the same stat as we
  // have for non-delayed tasks, and we consistently call it queueing delay.
  TrackedTime effective_post_time = completed_task.delayed_run_time.is_null()
      ? tracked_objects::TrackedTime(completed_task.time_posted)
      : tracked_objects::TrackedTime(completed_task.delayed_run_time);

  // Watch out for a race where status_ is changing, and hence one or both
  // of start_of_run or end_of_run is zero.  In that case, we didn't bother to
  // get a time value since we "weren't tracking" and we were trying to be
  // efficient by not calling for a genuine time value. For simplicity, we'll
  // use a default zero duration when we can't calculate a true value.
  DurationInt queue_duration = 0;
  DurationInt run_duration = 0;
  if (!start_of_run.is_null()) {
    queue_duration = (start_of_run - effective_post_time).InMilliseconds();
    if (!end_of_run.is_null())
      run_duration = (end_of_run - start_of_run).InMilliseconds();
  }
  current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
}

// static
void ThreadData::TallyRunOnWorkerThreadIfTracking(
    const Births* birth,
    const TrackedTime& time_posted,
    const TrackedTime& start_of_run,
    const TrackedTime& end_of_run) {
  if (!kTrackAllTaskObjects)
    return;  // Not compiled in.

  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  if (!birth)
    return;

  // TODO(jar): Support the option to coalesce all worker-thread activity under
  // one ThreadData instance that uses locks to protect *all* access.  This will
  // reduce memory (making it provably bounded), but run incrementally slower
  // (since we'll use locks on TallyBirth and TallyDeath).  The good news is
  // that the locks on TallyDeath will be *after* the worker thread has run, and
  // hence nothing will be waiting for the completion (... besides some other
  // thread that might like to run).  Also, the worker threads tasks are
  // generally longer, and hence the cost of the lock may perchance be amortized
  // over the long task's lifetime.
  ThreadData* current_thread_data = Get();
  if (!current_thread_data)
    return;

  DurationInt queue_duration = 0;
  DurationInt run_duration = 0;
  if (!start_of_run.is_null()) {
    queue_duration = (start_of_run - time_posted).InMilliseconds();
    if (!end_of_run.is_null())
      run_duration = (end_of_run - start_of_run).InMilliseconds();
  }
  current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
}

// static
void ThreadData::TallyRunInAScopedRegionIfTracking(
    const Births* birth,
    const TrackedTime& start_of_run,
    const TrackedTime& end_of_run) {
  if (!kTrackAllTaskObjects)
    return;  // Not compiled in.

  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  if (!birth)
    return;

  ThreadData* current_thread_data = Get();
  if (!current_thread_data)
    return;

  DurationInt queue_duration = 0;
  DurationInt run_duration = 0;
  if (!start_of_run.is_null() && !end_of_run.is_null())
    run_duration = (end_of_run - start_of_run).InMilliseconds();
  current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
}

const std::string ThreadData::thread_name() const { return thread_name_; }

// This may be called from another thread.
void ThreadData::SnapshotMaps(bool reset_max,
                              BirthMap* birth_map,
                              DeathMap* death_map,
                              ParentChildSet* parent_child_set) {
  base::AutoLock lock(map_lock_);
  for (BirthMap::const_iterator it = birth_map_.begin();
       it != birth_map_.end(); ++it)
    (*birth_map)[it->first] = it->second;
  for (DeathMap::iterator it = death_map_.begin();
       it != death_map_.end(); ++it) {
    (*death_map)[it->first] = it->second;
    if (reset_max)
      it->second.ResetMax();
  }

  if (!kTrackParentChildLinks)
    return;

  for (ParentChildSet::iterator it = parent_child_set_.begin();
       it != parent_child_set_.end(); ++it)
    parent_child_set->insert(*it);
}

// static
void ThreadData::SendAllMaps(bool reset_max, class DataCollector* target) {
  if (!kTrackAllTaskObjects)
    return;  // Not compiled in.
  // Get an unchanging copy of a ThreadData list.
  ThreadData* my_list = ThreadData::first();

  // Gather data serially.
  // This hackish approach *can* get some slighly corrupt tallies, as we are
  // grabbing values without the protection of a lock, but it has the advantage
  // of working even with threads that don't have message loops.  If a user
  // sees any strangeness, they can always just run their stats gathering a
  // second time.
  for (ThreadData* thread_data = my_list;
       thread_data;
       thread_data = thread_data->next()) {
    // Get copy of data.
    ThreadData::BirthMap birth_map;
    ThreadData::DeathMap death_map;
    ThreadData::ParentChildSet parent_child_set;
    thread_data->SnapshotMaps(reset_max, &birth_map, &death_map,
                              &parent_child_set);
    target->Append(*thread_data, birth_map, death_map, parent_child_set);
  }
}

// static
void ThreadData::ResetAllThreadData() {
  ThreadData* my_list = first();

  for (ThreadData* thread_data = my_list;
       thread_data;
       thread_data = thread_data->next())
    thread_data->Reset();
}

void ThreadData::Reset() {
  base::AutoLock lock(map_lock_);
  for (DeathMap::iterator it = death_map_.begin();
       it != death_map_.end(); ++it)
    it->second.Clear();
  for (BirthMap::iterator it = birth_map_.begin();
       it != birth_map_.end(); ++it)
    it->second->Clear();
}

bool ThreadData::Initialize() {
  if (!kTrackAllTaskObjects)
    return false;  // Not compiled in.
  if (status_ >= DEACTIVATED)
    return true;  // Someone else did the initialization.
  // Due to racy lazy initialization in tests, we'll need to recheck status_
  // after we acquire the lock.

  // Ensure that we don't double initialize tls.  We are called when single
  // threaded in the product, but some tests may be racy and lazy about our
  // initialization.
  base::AutoLock lock(*list_lock_.Pointer());
  if (status_ >= DEACTIVATED)
    return true;  // Someone raced in here and beat us.

  // Perform the "real" TLS initialization now, and leave it intact through
  // process termination.
  if (!tls_index_.initialized()) {  // Testing may have initialized this.
    DCHECK_EQ(status_, UNINITIALIZED);
    tls_index_.Initialize(&ThreadData::OnThreadTermination);
    if (!tls_index_.initialized())
      return false;
  } else {
    // TLS was initialzed for us earlier.
    DCHECK_EQ(status_, DORMANT_DURING_TESTS);
  }

  // Incarnation counter is only significant to testing, as it otherwise will
  // never again change in this process.
  ++incarnation_counter_;

  // The lock is not critical for setting status_, but it doesn't hurt. It also
  // ensures that if we have a racy initialization, that we'll bail as soon as
  // we get the lock earlier in this method.
  status_ = kInitialStartupState;
  if (!kTrackParentChildLinks &&
      kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
    status_ = PROFILING_ACTIVE;
  DCHECK(status_ != UNINITIALIZED);
  return true;
}

// static
bool ThreadData::InitializeAndSetTrackingStatus(bool status) {
  if (!Initialize())  // No-op if already initialized.
    return false;  // Not compiled in.

  if (!status) {
    status_ = DEACTIVATED;
  } else {
    if (kTrackParentChildLinks)
      status_ = PROFILING_CHILDREN_ACTIVE;
    else
      status_ = PROFILING_ACTIVE;
  }
  return true;
}

// static
bool ThreadData::tracking_status() {
  return status_ > DEACTIVATED;
}

// static
bool ThreadData::tracking_parent_child_status() {
  return status_ >= PROFILING_CHILDREN_ACTIVE;
}

// static
TrackedTime ThreadData::NowForStartOfRun(const Births* parent) {
  if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
    ThreadData* current_thread_data = Get();
    if (current_thread_data)
      current_thread_data->parent_stack_.push(parent);
  }
  return Now();
}

// static
TrackedTime ThreadData::NowForEndOfRun() {
  return Now();
}

// static
TrackedTime ThreadData::Now() {
  if (kTrackAllTaskObjects && tracking_status())
    return TrackedTime::Now();
  return TrackedTime();  // Super fast when disabled, or not compiled.
}

// static
void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
  base::AutoLock lock(*list_lock_.Pointer());
  if (worker_thread_data_creation_count_ == 0)
    return;  // We haven't really run much, and couldn't have leaked.
  // Verify that we've at least shutdown/cleanup the major namesd threads.  The
  // caller should tell us how many thread shutdowns should have taken place by
  // now.
  return;  // TODO(jar): until this is working on XP, don't run the real test.
  CHECK_GT(cleanup_count_, major_threads_shutdown_count);
}

// static
void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
  // This is only called from test code, where we need to cleanup so that
  // additional tests can be run.
  // We must be single threaded... but be careful anyway.
  if (!InitializeAndSetTrackingStatus(false))
    return;
  ThreadData* thread_data_list;
  {
    base::AutoLock lock(*list_lock_.Pointer());
    thread_data_list = all_thread_data_list_head_;
    all_thread_data_list_head_ = NULL;
    ++incarnation_counter_;
    // To be clean, break apart the retired worker list (though we leak them).
    while (first_retired_worker_) {
      ThreadData* worker = first_retired_worker_;
      CHECK_GT(worker->worker_thread_number_, 0);
      first_retired_worker_ = worker->next_retired_worker_;
      worker->next_retired_worker_ = NULL;
    }
  }

  // Put most global static back in pristine shape.
  worker_thread_data_creation_count_ = 0;
  cleanup_count_ = 0;
  tls_index_.Set(NULL);
  status_ = DORMANT_DURING_TESTS;  // Almost UNINITIALIZED.

  // To avoid any chance of racing in unit tests, which is the only place we
  // call this function, we may sometimes leak all the data structures we
  // recovered, as they may still be in use on threads from prior tests!
  if (leak)
    return;

  // When we want to cleanup (on a single thread), here is what we do.

  // Do actual recursive delete in all ThreadData instances.
  while (thread_data_list) {
    ThreadData* next_thread_data = thread_data_list;
    thread_data_list = thread_data_list->next();

    for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
         next_thread_data->birth_map_.end() != it; ++it)
      delete it->second;  // Delete the Birth Records.
    delete next_thread_data;  // Includes all Death Records.
  }
}

//------------------------------------------------------------------------------
// Individual 3-tuple of birth (place and thread) along with death thread, and
// the accumulated stats for instances (DeathData).

Snapshot::Snapshot(const BirthOnThread& birth_on_thread,
                   const ThreadData& death_thread,
                   const DeathData& death_data)
    : birth_(&birth_on_thread),
      death_thread_(&death_thread),
      death_data_(death_data) {
}

Snapshot::Snapshot(const BirthOnThread& birth_on_thread, int count)
    : birth_(&birth_on_thread),
      death_thread_(NULL),
      death_data_(DeathData(count)) {
}

const std::string Snapshot::DeathThreadName() const {
  if (death_thread_)
    return death_thread_->thread_name();
  return "Still_Alive";
}

base::DictionaryValue* Snapshot::ToValue() const {
  base::DictionaryValue* dictionary = new base::DictionaryValue;
  // TODO(jar): Switch the next two lines to:
  // birth_->ToValue("birth", dictionary);
  // ...but that will require fixing unit tests, and JS to take
  // "birth_location" rather than "location"
  dictionary->Set("birth_thread",
      base::Value::CreateStringValue(birth_->birth_thread()->thread_name()));
  dictionary->Set("location", birth_->location().ToValue());

  dictionary->Set("death_data", death_data_.ToValue());
  dictionary->Set("death_thread",
      base::Value::CreateStringValue(DeathThreadName()));
  return dictionary;
}

//------------------------------------------------------------------------------
// DataCollector

DataCollector::DataCollector() {}

DataCollector::~DataCollector() {
}

void DataCollector::Append(const ThreadData& thread_data,
                           const ThreadData::BirthMap& birth_map,
                           const ThreadData::DeathMap& death_map,
                           const ThreadData::ParentChildSet& parent_child_set) {
  for (ThreadData::DeathMap::const_iterator it = death_map.begin();
       it != death_map.end(); ++it) {
    collection_.push_back(Snapshot(*it->first, thread_data, it->second));
    global_birth_count_[it->first] -= it->first->birth_count();
  }

  for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
       it != birth_map.end(); ++it) {
    global_birth_count_[it->second] += it->second->birth_count();
  }

  if (!kTrackParentChildLinks)
    return;

  for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
       it != parent_child_set.end(); ++it) {
    parent_child_set_.insert(*it);
  }
}

DataCollector::Collection* DataCollector::collection() {
  return &collection_;
}

void DataCollector::AddListOfLivingObjects() {
  for (BirthCount::iterator it = global_birth_count_.begin();
       it != global_birth_count_.end(); ++it) {
    if (it->second > 0)
      collection_.push_back(Snapshot(*it->first, it->second));
  }
}

void DataCollector::ToValue(base::DictionaryValue* dictionary) const {
  base::ListValue* list = new base::ListValue;
  for (size_t i = 0; i < collection_.size(); ++i) {
    list->Append(collection_[i].ToValue());
  }
  dictionary->Set("list", list);

  base::ListValue* descendants = new base::ListValue;
  for (ThreadData::ParentChildSet::const_iterator it =
           parent_child_set_.begin();
       it != parent_child_set_.end();
       ++it) {
    base::DictionaryValue* parent_child = new base::DictionaryValue;
    it->first->ToValue("parent", parent_child);
    it->second->ToValue("child", parent_child);
    descendants->Append(parent_child);
  }
  dictionary->Set("descendants", descendants);
}

}  // namespace tracked_objects